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I Achieving high rates of floating-point computation is one of the primary goals of many
computer designs. Many high speed floating-point datapaths have been designed in order
to address this problem. However, conventional designs often neglect the real problem in
achieving high performance floating-point: providing the necessary I/O bandwidth to keep
the high speed datapaths busy.
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James Alexander Stuart Fiske

Abstract
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The Reconfigurable Arithmetic Processor (RAP) is an arithmetic processing node for a
message-passing, MIMD concurrent computer. Its datapath is designed to sustain high
rates of floating-point operations, while requiring only a fraction of the I/O bandwidth
required by a conventional floating-point datapath. The RAP incorporates on one chip
eight 4-bit serial, 64 bit floating-point arithmetic units connected by a switching network.
By sequencing the switch through different patterns, the RAP chip calculates complete
arithmetic formulas. By chaining together its arithmetic units the RAP eliminates the 1/O
bandwidth associated with storing and retrieving intermediate results, and reduces the
amount of off chip data transfer.
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“ This thesis describes and evaluates the RAP architecture. It presents two important

aspects of the chip design: the control logic design, and the schematic level design of the
RAP datapath. . The RAP datapath design includes the design of two 4-bit serial floating- -
point units: an adder/subtracter unit and a multiplier unit. In order to use the RAP
datapath, a compiler is developed that takes as input a list of mathematical expressions,
and outputs a series of switch configuratxons to be used by the RAP to do the calculation.
On 23 benchmark problems, the RAP reduced both the on chip and off chip bandwidth
requirements by an average of 64%, when compared the bandwidth required by a
conventional arithmetic chip that does not exploit locality. Average floating-point
performance is 3.40 Millions of Floatmg—pomt operations per second (MFlops).
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Abstract

Achieving high rates of floating-point computation is one of the primary goals of many computer
designs. Many high speed floating-point datapaths have been designed in order to address this
problem. Howe-er, conventional designs often neglect the real problem in achieving high perfor-
mance floating-point: providing the necessary I/O bandwidth to keep the high speed datapaths
busy. :

The Reconfigurable Arithmetic Processor (RAP) is an arithmetic processing node for a message-
passing, MIMD concurrent computer. Its datapath is designed to sustain high rates of floating-point
operations, while requiring only a fraction of the I/O bandwidth required by a conventional floating-
point datapath. The RAP incorporates on one chip eight 4-bit serial, 64 bit floating-point arithmetic
units connected by a switching network. By sequencing the switch through different patterns, the
RAP chip calculates complete arithmetic formulas. By chaining together its arithmetic units the
RAP eliminates the I/O bandwidth associated with storing and retrieving intermediate results, and
reduces the amount of off chip data transfer.

This Thesis describes and evaluates the RAP architecture. It presents two important aspects of the
chip design: the control logic design, and the schematic level design of the RAP datapath. The RAP
datapath design includes the design of two 4-bit serial floating-point units: an adder/subtractor
unit and a multiplier unit. In order to use the RAP datapath, a compiler is developed that takes
as input a list of mathematical expressions, and cutputs a series of switch configurations to be used
by the RAP to do the calculation.

On 23 benchmark problems, the RAP reduced both the on chip and off chip bandwidth requirements
by an average of ‘64%, when compared the bandwidth required by a conventional arithmetic chip
that does not exploit locality. Average floating-point performance is 3.40 Millions of Floating-point
operations per second (MFlops).
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Chapter 1

Introduction

Let us go singing as far as we go: the road will be less tedious.
— VIRGIL, in Eclogues, IX, 1.64
What ezperience and history teach is this — that people

and governments never have learned anything from *istory,
or acted on principles deduced from it.

— GEORGE WiLBELM FRIEDRICE HEGEL in Philosophy of History (1832)

1.1 The I/O Bandwidth Problem

The problem is building fast arithmetic chips is not building fast arithmetic circuits but
rather supplying the necessary I/O bandwidth. For example, a conventional 64 bit-parallel
floating-point adder or multiplier pipe computing at 20MFlops (Millions of Floating-point
operations per second) requires an I/O bandwidth of 3.8Gbit/sec. This rate of I/O is very
' difficult to achieve with anything less than dedicated lines and a continuous stream of data.
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The problem is anly getting worse: today it is possible to. build a pipelined bit-parallel -
100MFlap floating-peoint adder or multiplier, but be unable to exploit more than a smail
Tractian of its power due to insufficient [/O bandwidth.

The [/O bandwidth problem. occurs.at two different levels: off chip /O and on chip
I/@. Off chip [/O is the most severe problem because of packaging limitations. Off clip
capacitances are orders of magnitude larger than ou chip capacitances (10 pf compared
to Q.01 pf) which slows down the propagation of signals. Also, the number of pins on a
chip is imited due to poysicai constraints. Although packaging rechnology is improving,
the inherent physical limitations prevent off chip bandwidth from achieving levels that are
passible on chip, and ways must be found to-limit off chip I/O requirements.

On chip there can be a bandwidth problem between storage (memory and registers), |
and logic circuitry. The problem is caused by high capacitance bus and memory lines which
limit the speed at which data can be moved between storage and logic. The problem is
much less severe than the off chip case since there are many mechanisms for dealing with
the problem: multiple busses, multi-ported registers and memory, and sophisticated sensing
circuitry. These approaches to solving the problem can mean a substantial increase in chip

area.

Since technology improvements are not eliminating the I/O problem, it is important
to explore architectural solutions to both the off chip and the on chip I/O bandwidth
bottlenecks. The architecture of the Reconfigurable Arithmetic Processor (RAP) addresses
both these problems in the case of high speed floating-point arithmetic.

1.2 The RAP

The RAP is a CMOS, 64 bit, ﬂoatin'g-point arithmetic chip. It is designed to sustain high

rates of floating-point operations, while requiring only a fraction of the I/O bandwidth of a
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conventional arithmetic chip. To do this the RAP allows the direct calculation of complete

expressions that contain several adds, subtracts, and multiplies.

The RAP uses serial arithmetic. Bit-serial arithmetic implementations are more area
efficient than bit-parallel implementations in that they require a much smaller amount of
chip area. This area efficiency is due to the use of narrow datapaths rather than wide -
datapaths. The savings in area is not without cost: serial implementations are slower than
parallel implementations because bits must be clocked sequentially into and out of the

circuit. Results cannot “flow through” to the output as in parallel implementations.

The reduced area requirements of serial arithmetic allow several Arithmetic Units (AUs)
to be put on a single chip. Having narrow serial datapaths also allows the implementatibn of
an area efficient switching network that can be used to route data between AUs. Although
a single serial unit is slower than a parallel implementation, the RAP makes up for this by
exploiting the functional parallelism achieved by having several units on one-chip: instead
of using a single 32MFlop bit parallel unit, eight 4MFlop bit serial units running in parallel
are used. Performance is then determined by the extent to which this parallelism can be

exploited, which in turn is dependent on the structure of the problem.

The reconfigurable RAP datapath shown in Figure 1.1 consists of a number of 4-bit serial
AUs, a switch, input registers, and output registers. Data is first shifted through the switch
and gets routed to the appropriate AUs. Intermediate results are fed back into the switch
which is reconfigured to allow the next stage of the computation to take place. When the
computation is complete the results are sent to the output registers. A compiler has been
written that compiles mathematical expressions into the successive switch configurations

needed to pérfdrm the calculation.

At a higher level, the RAP has a message passing interface that allows it to be integrated
into the J-Machine[8], a message passing concurrent computer system. A RAP is sent

messages that define equations as a sequence of switch configurations. which are stored in




CHAPTER:1. INFRQDUCTION. 10

IN- A out
INPUT ) SERIAL
| REGISTERS»; .SW|TCH : ARllJTh:-:TI_ASETIC 1 REGISTERS

Figure 1.1: RAP Datapath.

locai memesy. Subsequent messages use these stored. configurations to evaluate the equation.
Meehanisms. are- included. that allow the. pipelining of several RAPs so that the output of
ose RAF caqn: he used: ag the input to another.

) o Eenfdtmm%

Two m}al; floating-point AUs, one an adder/subtractor, tl{e other a multiplier, were de-
signed: and; have. ap, expected: performance of 1.57MFlops. In the current design, there is a
lazge time gap, between. when, two successive problems can enter the AUs. Straightforward
modifications to the. AU design would eliminate these wasted clock cycles and allow better
pipelining of problems. This would increase the AU performance to 4.70MFlops. When used
in the RAP, some extta time is needed to change switch configurations, so that the AUs
would have a peak performance of 4MFlops. This gives a peak performance of 32MFlops
for a RAP containing four add/subtract units and four mu_lﬁply units.

The average ! floating-paint performance achieved for 23 benchmark problems that were
simulated is 3.40MFlops or 11% of the peak performance. More importaatly, the off chip
1/O bandwidth required ta sustain the computation rate is reduced on average by 64%.

“Throughout this thesis, “average” refers to the harmonic mean whenever the quaatity in question is a
“rate”, such as a floating-point rate or a bandwidth rate.
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This is when compared to the bandwidth required by a conventional chip where no locality
is exploited. When compared to a conventional chip augmented by a register file used to
keep intermediate results from going off chip, the on chip I/O bandwidth required between
storage and logic in the RAP is also reduced by 64%. The RAP approach also results in a

more area efficient implementation.

1.3 Background

1.3.1 The J-Machine

The RAP cixip is being designed as a part of the J-Machine (8], a message passing concur- |
rent computer system under development at MIT. This system is based on a mesh routing
network that connects a collection of processing nodes, and uses wormhole routing tech-
niques to reduce message latency to approximately 2us for a 200 bit message on a 4K node
network [9]. Each single-chip node includes both the network communication hardware
and 5 processor. The RAP chip is one node type that can fit into the network “slots”, as
shown in Figure 1.2. It includes the necessary control mechanisms and message handling
capabilities to fit into the system. The RAP borrows several ideas that were first developed
in the Message Driven Processor (MDP) (7], the general purpose computing node for the
system. In particular the RAP executes messages directly, reducing message interpretation

overhead, and it makes use of the same network communication scheme [6, 9].

1.3.2 Ari.th.metic

Many computer applications in such areas as a.ﬁa.log circuit simulation, N-body problems,
finite element analysis, digital signal processing, and three dimensional graphics require

large amounts of floating-point computing power [32]. To satisfy this demand, many spe-
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MDP
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Figure 1.2: J-Machine Configuration
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cial purpose board level and chip level arithmetic processors have been built [14. 26, 4].
Approaches range from math coprocessors that act as extensions to a main processor (e.g.
the Intel 80387 and the Motorola MC68881) to dedicated math processors designed for
specific applications. In most cases these processors are implemented using a bit-parallel
approach. Because of this approach, implementations are expensive in terms of silicon area

and only one or two floating-point units can be put on a single chip.

The area efficiency of serial arithmetic allows several floating-point units to be put on a
single chip. Serial arithmetic has been used in many Digital Signal Processing applications
{30, 24]. The idea of exploiting functional parallelism using serial fixed-point arithmetic

"has been used in this area [25]. Many algorithm alternatives exist for serial arithmetic
implementation [5, 23, 16, 29, 35].

1.3.3 Another Approach S ,

Another approach to the I/O bandwidth problem is to use an on chip register file to store
operands and intermediate results {4]. The register file serves the same function as a switch,
selecting data to be input to each function unit during each pipeline time slot. The register
file performs this switching both by storing data to move it to a different time slot, and by
multiplexing many registers into each register file port. The serial switch in the RAP elim-
inates the need for storage and simplifies the multiplexing. The resulting switch is smaller,
both because it is serial and because it contains no storage. The switch is also simpler
to contral: switch configurations are changed each word time (a word time corresponds to
the time it takes to clock a 64 bit operand serially thrdugh the switch), while register file
addresses must be changed each clock cycle. The slow control signals allows the switch to
operate faster than a comparable register file. A more detailed comparison of the register

file approach and the approach used in the RAP is found in Chapter 2.
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1.3.4 The Scheduling Problem

In the RAP the operations in an expression must-be scheduied on the functional units. This
scheduling is done subject to a number of constraints, including the number of functionai
umits: available and the connectivity of the switch. The scheduling of partially ordered tasks
on.limited: andrsiared resources has-been.studied in. different. contexts including operations
research, microprogramming, and parallel computing. In particular, compilers for VLIW
processors {10, 21] that scheduie operations-on muitiple functional units, deal with a problem
very similar to-the scheduling problem on the RAP. The approach used in these compilers is
one cailed: list scheduling which involves keeping a list of schedulable operations, and using
heuristics to help in determining which operations should be scheduled first.

The technique used to-schedule expressions on the RAP involves a depth first search that
uses various tree search pruning techniques such as branch-and-bound [33, 37). Heuristics
similar to those used in list scheduling are used to determine which operations should be
scheduled first.

1.4 Thesis Overview

This Thesis describes the RAP architecture, presents the design of the logic required to
control the RAP as well as the circuit design of the RAP datapath, describes an expression
compiler which maps expressions onto the RAP switch, and evaluates the RAP performance.

Chapter 2 describes the RAP architecture. How the RAP reduces the off chip bandwidth
requirements to do floating-point camputations is illustrated with an example. How the
RAP warks a.ﬁd how it is used and controlled with messages is discussed. The RAP’s block
diagram is deseribed in detail, and the architecture is compared to the use of a multi-ported
register file ta axploit lacality and reduce bandwidth requirements.
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Chapters 3 and 4 deal with two of the most important aspects of the chip design: the
design of the control logic and the design of the datapath hardware. In Chapter 3 a RAP
simulator is used to design and verify the RAP control logic. This simulator is also used
in Chapter 6 to help evaluate performance. Chapter 4 presents the hardware design of the
RAP datapath, in particular the design of the floating-point functional units and the design
of the switch, which are the most critical components in determining the performance of
the RAP.

In order to be able to use the RAP arithmetic expressions or sets of expressions must
be mapped into a series of RAP switch configurations. A compiler which performs this
mapping is described in chapter 5.

Chapter 6 presents a performance evaluation of the RAP. The expression compiler of ‘
Chapter 5 is used to map a number of benchmarks onto the RAP and performance is
evaluated in terms of the bandwidth required, and in terms of floating-point rates achieved.
The factors that limit performance are discussed, and various schemes that can be used to

improve performance are examined.

Finally, the results of the thesis are summarized and a few open research issues are

discussed in chapter 7.




Chapter 2

Architecture

Ezperience has shown that to be true which Appius says in _

his verses, that every man is the architect of his own fortune.
~— SALLUST, in Speech to Caesar on the State, sec. I

Do all the good you can,

By all the means you can,

In all the ways you can,

In all the places you can,

At all the times you can,

To all the people you can,
As long as ever you can.

— JoaN WESLEY, John Wesley’s Rule

In. this. chapter a complete- description of the RAP is given. In section 2.1 an example
problem. is. siown which. illustrates. the RAP operation and how it reduces bandwidth re-
quirements:. Section: 2.2 describes the different ways of using the RAP within a J-Machine
system. and’ describes the' messages used to-control: the RAP. Section 2.3 gives a detailed

Sloek diagram:or the RAP: Finaily. section 2.4 compares she ipproach 1sed in "he RAP o
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reduce off chip bandwidth to the approach used in more conventional design, which involves

using an on chip register file.

2.1 An example

In order to illustrate how the RAP uses functional parallelism to exploit the locality and the
concurrency found in mathematical equations, the calculation a 4-point Fast Fourier Trans-
form (FFT) [28, 31] is examined. The 4-point FFT datafiow graph is shown in Figure 2.1.
It consists of 12 multiplies and 22 additions used to calculate the real and im'ag_ina.ry parts
of the 4 output results. This graph is evaluated by a RAP as follows: First a “method”
describing the schedule for each level of the calculation is stored in the RAP memory. Then
a message is received containing the 14 input variables necessary for the computation. As-
suming an ideal setting, the RAP successively runs through each level of the calculation
as described by the method, exploiting functional pa.ralllelism by doing all operations of a
given level in parallel. Finally it sends a message containing the results to the appropriate

destination.

In a realistic setting, determining the successive configurations of a method involves
a scheduling problem, since the RAP may not have enough AUs to perform all possibie
concurrent operations at once. The RAP has four adders/subtractors and four multipliers.
At any given time there may not be enough AUs to begin all operations that have their
operands ready. Furthermore, the switch may limit the operations that can be'scheduled
if it prevents two operands from both reaching the same AU. The scheduling problem is
discussed in detail in Chapter 5.

The off chip I/O bandwidth required is reduced to 25% of the bandwidth required by
a conventional bit-parallel arithmetic chip. A conventional arithmetic chip would require
34 x 3 = 102 word transfers, where 34 corresponds to the number of operations, and 3

corresponds to the two words of input data and one word of output data for each opera-
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tion. Using a RAP, only 26 words must be transferred on and off chip, consisting of 14
input operands, 8 output results, and 4 words of overhead information. This reduced I/O

bandwidth makes it possible for a communications network to keep the chip busy.

Note that only the data I/O is considered here. It is assumed that the 4X4FFT method
has already been stored in the RAP memory, so that there is no control overhead other

than message overhead. The RAP is able to store several different methods in its memory.

2.2 Using the RAP

2.2.1 A System Perspective

Within the context of the J-Machine, a single RAP can be used to do a calculation, or
several RAPs can be used at once to help speed up the -ca.lculafion. When used by itself
the RAP acts as a compute server which receives messages from MDPs, does the calcula-
tions requested by these incoming messages, and forwards the results to a specified MDP

destination.

RAPs can also be used in combination to complete a calculation faster. One example
of this is pipelining a computation through several RAPs, as shown in Figure 2.2b. Each
RAP does one part of the computation, and feeds intermediate results to the next RAP
which continues the computation. As in all pipelines, an effort must be made to match the
pipeline stages: each stage should have roughly the same amount of work to do so that no
stage holds up -any other stage. The network must also be considered as a pipeline stage

since it passes data between RAPs at a finite speed.

An extension of the idea of pipelining is the idea of forking shown in Figure 2.2c. In this
case the work of a given pipeline stage is fanned out over several RAPs. The counterpart of

a ‘ork operation is the join operation, where the resuits from several RAPs are combined in
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MDP ' RAP

F) ST

—— RAP —> RAP —> RAP —>

o)
RAP p—>
—*1 RAP RAP —>
"o . RAP [—>

—={ RAP

MDP — RAP [—>

— RAP
d)

Figure 2.2: RAP Usage: a) RAP Used Alone, b) RAP Pipeiine, ¢c) RAP Fork Operation,
d) RAP Join Operation
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some way, before the computation is continued. This is shown in Figure 2.2d and requires
an MDP to perform the synchronization and combining of resuits coming from different
RAPs.

One simple mechanism based on forwarding templates is provided in the RAP which
permits it to be used in all the ways described above. Templates and their use are described

in the next section.

2.2.2 Messages

There are three types of messages that the RAP processes in order to support the types of

operations described above:
1. CONFIGURE AND EXECUTE (C+E). This message causes operands to be loaded
into the input registers, passed through one or more switch configurations, and then
uﬂMed from the output registers. This is repeated for each set of operands in the

message.

2. STORE METHOD (SM). This message is used to store a method in local memory so
that it can be used by the C+E message. A method describes a sequence of switch

configurations necessary to perform a calculation.

3. STORE TEMPLATE (ST). This message is u~ed to store a template in local memory.
A template contains forwarding information that allow.: the forwarding of results to

a specified destination such as an MDP or another RAP.

Message formats are shown in Figure 2.3. The C+E message has METHOD-ID and
TEMPLATE-ID fields that specify the method and template to be used. Method and tem-
‘ plate IDs are memory addresses that point at the first element of the method or tempolate.

Methods and templates must be sent to the RAP before the C+E commands that use them.
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C+E METSO 0 TEW,LDME' NO;DOE RE,SLY OPERANDS | oPeRaNDs! ... ... .. END |
i 1 ‘

METHCD | INPUT OUTPUT 7 OF
SM " REGISTERS REGISTERS CONFIGURATIONS|  CONFIGURATIONS | END
ST TPATE | e | cee | NER 'asemoo NEXT T!‘EgJIPLATE END

Figure 2.3: Message Formats

The C+E message also has NODE-ID and REPLY-ID fields that specify the ultimate des-
timation of the results. The NODE-ID is the network address of a non-RAP node, and the
REPLY-ID is a message header. These two fields are used in conjunction with template in-

formation to forward output results. The information contained in methods and templates .
is discussed in detail in the following sections.

Methods

A method consists of all the information necessary to put operands through a sequence of

switch configurations. It includes:
1. Which input registers to load with the operands.
2. Which output registers will contain the results.

3. The number of switch configurations that the operands are to go through.

4. A description of each of the configurations. Each configuration specifies the switch
connectivity, and the functionality of the AUs (e.g. one bit might determine whether

an AU does an add or a subtract).

o ————— e ————
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The first three pieces of information are packed into one word (72 bits !) of the method
description. Each configuration also takes one word. The number of operand sets that will
be used with a given method is not included in the method description. It can deduced

from the end of message signal.

Templates

A template is used to permit the cascading of several RAP chips. It contains information
that allows the forwarding of the output data, in the form of a C+E message, to another
RAP for further computation. A template consists of the address of the next RAP that the
results are to be sent to, and the instruction {method and template) that is to be executed '

there.

<Cascading of RAPs w;arks as follows: the MDP sets up the pipeline by loading methods
and templates into the appropriate RAP chips. Then a C+E message is sent to the first
RAP in the pipeline, beginning the calculation. Each RAP uses its template to forward
results to the next RAP in the pipeline. The return address, in the form of the NODE-ID
and REPLY-ID, is passed from RAP to RAP until it is used at the last stage to get the
results to their final destination (the use of the “default” template causes the results to be

sent to the return address).

Templates are specified separately from methods. This allows different calculations to
use common subroutines and permits a single calcula'tion to distribute its work over several
RAPs (i.e. do a fork operation). For example, a routine that multiplies all the elements of
two vectors ean be used by several different calculations. By using a different template to
forward the result, such a routine can be used by itself or can be used in an inner product

routine. A RAP can also use the different templates to divide up a problem, fanning data

!The MDP has a 36 bit word inciuding a 32 bit data field and a 4 bit tag field. It is convenient to define
the word size for the RAP to be 72 bits or two MDP words, since all operands are 64 bit floating-point
numbers.
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ont to & mumber of different RAPs. In this case several RAPs contain the same method

and the choice of templates distributes the work over these processors.

2.3 Block Diagram

Figure 2.4 shows a block diagram of the complete RAP consisting of the control blocks, the

memories, and: the datapath. There are four control blocks: input control, output controi,

switch control, and network interface control. Input control executes incoming messages,

and comtrois the input to the datapath, and most memory operations. Output control is

responsible for creating result messages in the output queue. Switch control is responsible

for loading switch configurations at the correct time. Finally, network interface control

is responsible for message reception and transmission. By dividing the control into these

four different blocks the operations of receiving a message, loading operands, changing the

switch configuration, unloading results, and sending a result message can be pipelined. ’
Hardware interlocks resolve memory contention and provide feedback to prevent the queues

from overflowing.

There are three memories on the chip: a main memory for holding templates and meth-
ods, an input queue, and an output queue. The input and output queues are 64 word
memories with separate ports for the network and processor. The main memory (256
words) has separate input and output ports and is shared t?etween the input control and

the switch control, with priority given to the switch control.

The datapath consists of 16 input registers, a switch, a switch configuration register,
a collection of 16 functional units, 16 output registers, and some buffer stor.age for the
template. The 16 functional units consist of 4 add/subtract AUs, 4 multiply AUs, and 8
feedthroughs. The 8 feedthrough units are used to pass operands unchanged with a fixed
delay.
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Initially, operands are loaded into the input registers from the input queue, and are
shifted: through the switch into the functional units. The outputs of the functional units
feed back into the switch, allowing intermediate results :o be routed back o the inputs
of the functional units. The results. are finally shifted into the output registers and then
are unioaded into the output queue. The input and output registers perform parallel-serial
and sexial-parallel conversion respectively, and can be loaded or unloaded as the switch and
functional units are busy computing another problem. In order to perform the routing of
intermediate resuits, the switch is reconfigured at regular intervals by the switca control unit
wiich reloads the switch configuration register. The message header information is taken
from. the: appropriate template and is unloaded into the output queue before the output
results.

2.3.1 Arithmetic Units

The RAP includes adders/subtractors, and multipliers. The design of thege units is pre-
sented in Chapter 4. Their estimated performance is 1.57MFlops, with a floating-point
adder/subtractor Requiring 3.2M)? and a floating-point multiplier requiring 5.6MA2.

The AUs are clocked at 80Mhz which is four times faster than the 20MHz clock used
for the memory and control. It is convenient to define two types of cycles: a minor cycle
corresponding to an AU clock cycle, and a major cycle corresponding to a memory cycle.
"It is also convenient to define a word time as the time required to shift a complete operand
into an AU. Since the AUs are 4-bit serial, a word time corresponds to 16 minor cycles or
4 majar cycles. The units have a latency of approximately three word times. During this

time the expanent and maatissa are computed, and normalization is performed.

In the initial design there is also a three word latency between when two different

problems can begin computing. However, with suitable design modifications 2, this latency

IThese modifications were 10t impiementea due to time constraints. Chapter + Jdiscusses in more detail




CHAPTER 2. ARCHITECTURE 27

could be reduced to one word time. This means that as many as three problem could be
in the AUs at one time (one problem for each word of latency through the AU), increasing
the performance of an individual AU to 4.70MFlops.

In evaluating the RAP, the performance for the improved AU design is used. Within
the context of the RAP, extra time is needed to change switch configurations each word
time. This results in a word time being extended to 5 major cycles, and each AU having a

peak performance of 4MFlops.

2.3.2 Switch

The switch topology is shown in Figure 2.5. Each AU selects one of 8 inputs for each
of their two operands, while the feedthroughs each have thé choice of 4 inputs. On the
first configuration of any given method the inputs are taken from the 16 input registers,
while on subsequent configurations the inputs are taken from the outputs of the AUs and
feedthroughs. The column of 2X1 multiplexers is used to make this choice.

The switch chosen does not offer complete connectivity in which any output can be -
connected to any input. In fact, it has less than half of the connections of a complete
crossbar. The incomplete switch has the advantage of being faster and requiring less state
information. It is faster because there is less than half the capacitance on the input and
output lines to the switch that there would be in the case of a complete crossbar. The
amount of state required to describe each configuration is only 68 bits (3 bits for each AU
input, 2 bits for each feedthrough, and 1 bit for each adder/subtractor to select the add or
subtract function) which fits into a single 72 bit word. This allows a change of the switch
configuration in a single major cycle by reading a single word from memory. For the bench-
mark problems used to evaluate performance, the incomplete connectivity did not prevent

an efficient mapping of the problems onto the switch. The principal reason for this is that

what these modifications are.
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there are multiple units capable of performing the same function (add/subtract, mulitiply),
so complete connectivity results in unnecessary flexibility: with proper scheduling, it is
possible to limit the choice of units to a small subset of the AUs performing that function,
without losing much performance. With the switch shown, the RAP achieves 88% of the
performance that is achieved if the switch used is complete (see Chapter 6). In Chapter
5 an expression compiler which maps a given equation or set of equations into a series of

appropriate switch configurations is described.

2.3.3 Using the Datapath

There are several v;ra.ys that the RAP datapath can be organized in terms of how it calculates .
expressions. The simplest way, which does not require the AU to allow consecutive problems
to be pipelined one directly behind the other, is to have all functional units have the same
delay, including feedthroughs. In this case, only one operation can be computing in each
functional unit at once. Since the design for the floating-point units in Chapter 4 has a delay
of approximately three word times for both the adder/subtractor and the multiplier, having
only one problem computing at once means that at any given time 2/3 of the circuitry will
be inactive. Figure 2.6 shows how the sum of 8 numbers would be accumulated using two
adders and four feedthroughs. In this Figure, a snapshot of the state of the datapath is
shown for each word time. In word time one, two adds are initiated in the adders, X1+ X2
and X3 + X4. Since only two adders are available, the remaining inputs, X5 through X8
are sent to feedthroughs (FT). In word time two, all operations have advanced one word
time through the functional units. At the end of word time three, results begin to shift out
of the functional units, and two more adds can be initiated in word time four (X9 + X10
and X5+ X6). Operation continues until all the terms have been added together.

If the design of the AUs allows the pipelining of consecutive problems, the speed of
computation can be increased as shown in Figure 2.7. In this case, a feedthrough is turned

into a one word time delay which deiays an operand until the other overand is available
Yy ) ! t
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and there is a slot free in the AU pipeline. In word time two of Figure 2.7, two new add
operations can be initiated since the adders are available, and operands X5 through X8
are available as outputs from the feedthrough units. Note that this scheme also has the
advantage of allowing units with variable delay: an adder with a two word delay could be
used with a multiplier with a three word delay without having to insert an extra word delay
in the adder.

Alternatively, the pipelined AUs could be used to do multiple instances of the same
problem. In order to do multiple instances of the same problem, the datapath is thought
of as three different machines doing the same computation (i.e. using the same method)
on different operands. This is similar to the multi-threaded execution that occurs in the
HEP [34, 17), in which several instruction streams are used to keep a pipeline busy. Figure -
2.8 shows an example of this in thé case of the 8 number accumulate. In this example, as
many as three different problems are active in the datapath at once. Notice that the empty
slots in the datapath do not necessarily get filled right away because time is needed to load
the next set of operands into the input registers. Th.ié example assumes that a new set of

operands can be loaded and ready to go in two word times.

There are extra costs associated with both ways of exploiting the AU pipelining. Using
pipelining to increase the speed of a single computation requires a new switch configura-
tion every word time. This considerably increases the number of switch configurations in a
method and the storage required for each method. In the example given; 4 switch config-
urations were required in the method in the non-pipelined case, as compared to 10 in the
pipelined case. In some cases this method does not succeed in reducing the time spent in
doing a calculation (consider the case of accumulating 6 instead of 8 numbers in a sum),

but requires 3 times the number of switch configurations in the method definition 3. Having

31t is possible to find a way of compacting the method definition in this case. For instance, a word could
be added to the method definition in which each bit of the word indicates for each word time of the method
whether the switch configuration should change, or whether it should remain the same as in the previous
word .ime.
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sevezal- different. problems- in the datapath. requires.hardware to keep track of where each
of them:is in the.method (i.e. it is necessary to keep three different “Instruction Pointers™
into-the: current method). Als~ the switch configuration may have to be changed three
times: as. often (once every ward time) as-the non-pipelined case. urthermore, in order o
exploit- this. typerof usagg,the» prabiem. being solved must require that the same method be
calculated. many-times.with different. operands..

All things considered, the best way of exploiting the pipelining of probiems in the AUs is
to-use:pipelining to increase the periormance of a single probiem instance. Na extra controi
hardwareris: required.over the case where the AUs are not pipelined, and it is not necessary

to have many. instance-of the same problem in order to achieve good performance.

24 Comparison to Another Approach

A more conventional .way} of -déaling with the off chip I/O bandwidth problem is to include-

a register file on chip as shown in Figure 2.9. Intermediate results are stored in the register
file so that- they can be reused without going off chip. This reduces the off chip bandwidth
in the same way. that the RAP .does, by keeping intermediate results on chip. Having a
register file'on chip moves the I/O problem on chip where it can be dealt with more easily by
using multiple ports.. Using multi-ported register files to solve the off chip I/0 problem does
not.use chip area as efficiently as the RAP, and is more difficult to control, as is discussed

in.the following sections..

2:4.1 Parallel Arithmetic vs. Serial Arithmetic

Serialarithmetic uses chip area more efficiently than a parallel combinational approach. For
purposes of this section, efficiency is. defined to be P/A where P is the performance achieved

and. A i3 the.cost of this performance in terms of the chip area. Migure 2.10 compares -he
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relative efficiency” of combinational, parallel pipelined, and serfal pipelined approaches.

As:a starting point consider the combinational case. Periormance P is defined as 3/T
where B is the number of bits done in parallel, and T is the time required to do the
computation. The area required for the-implementation is A, so that the efficiency of the
im men.tatio;r—is just P'/A. In the combinational case only a smail portion of the logic is
active at any given time, corresponding a wavefront of activity of width At propagating
through the circuit, where At is the switching time of the circuitry.

When: the combinational unit is pipelinred by dividing it into n stages and inserting
latches between the different stages, there is an increase of performance because there are

n wavefronts of computation active at the same time. This increase in performance is not

without cost: there is a percentage increase ((n — l)e) in the area required due to the |

increased circuitry, and a percenta.ge increase ((r — 1)§) in the time of computation due
to synchronization costs and delay of the latches. These increases are proportional to_the
number of latch stages added. The net result is that pipelining increases efficiency up until
the point that the cost of the latches becomes significant. In order to get some feeling for
the cost of the latches, reasonable values for the parameters ¢ and § can be derived from
the arithmetic cell designed for the prototype fixed point RAP, which is described in more
detail in Chapter 4. This cell does two bit arithmetic and requires B /2 stages where B is the
number of bits. The area of the cell is 9.7K\? and the latches require approximately 50%
of the area and contribute approximately 50% of the delay. Using the expression for the
area in Figure 2.10b the formula A; = 24 = A + (B/2 - 1)eA must hold, from which it is
determined that € = 2/(B —2), or 0.032 when B = 64. Making the conservative assumption
that the time in the circuitry increases linearly with the number of bits, and also that the
time spent in the latches is constant, then the percentage cost in time for each stage is
é§ = 2/B, or 0.031 when B = 64. For these values of ¢ and § maximum efficiency is achieved

when n = 34.

Comparing :he serial case with the parallel case is compiicated because heir modes of
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1) COMBINATIONAL

B bits
i e—— ‘ PERFORMANCE = P1 = P = B/T
= = —— TME=Ti =T

T - :1 At
v P1/At = P/A

AREA=At1 = A
2) PIPELINED (n STAGES)

B bits
B E—————
= — - —— ’ T2 = T(1+(n-1)8)/n

[ - o,
-——-

- S e e
-— -

P2/A2 = nP/(A(1+(n-1)e)(1+(n-1)5)

A2 = A(1+(n-1)e)

3) SERIAL
B/n bits
e e

e T3 = T(1+(n-1)8)/n

P3/A3 = nP/(A(1+(n-1)e)(1+(n-1))

A3 = A(1+(n-1)e)/n

Figure 2.10: Parallel Arithmetic vs. Serial Arithmetic Efficiency
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opevation: ace so difevent. In the pipeline case each stage completes its work on a given
problen: and the next inputs are from another problem. In: the serial case each stage works
om the same: problem: several cyeles. receiving, part of the input at each cycle. However,
by making 2 number ofi simplifying assumptions, the seriai- case can be compared :o: the
perallek caser

.. Xsenme: that the- number of serial stagps: is inversely proportional to- the number of
tits done: in: parallel.

2. Assume that the: rime required. for :gjven stage is directly proportional to the number
off bite done in: parallel.

"THe first: assumption: implies: thiat if doing one bit. at a time requires 64 stages, then
doing; 2: bits: at: a: time* would: requirel‘32;stages. The area of multiplier array structures as
welli as. of a: number- of other- structures normally used. in-floating-point circuits (e.g. ba.rre.l
shiffers),. scales. as. (B/n)¥ wheﬁ- (B/n) is tlie:number of bits done in parallel. Reducing
the' mumber of bits: done-in. parallel by the factor n- would: normally. reduce the area by a
factor of n%.. However, under the.above assumption the area is reduced anly by a factor of
n, since:reducing: the-numberof. bits:done:in: parallel increases the number of stages. This
assumption is- reasonable: for most algorithims.but-ittdoes net:take into-account-algorithms
which: require- only, a. fixed: number- of stages. independent of the number of bits done in
parallel: (examples.of these-are: integer add’ which requires-only- a: single stage, and some
ofithe digit:om-line:[16; 35; 29} class:of algorithms). Praetical floating-point algorithms are
difficuit: to:implement: in: this: wayy because of the mutval dependence of the exponent and
theemantissa:fiélds..

The second:assumption.is- a- pessimistic assumption since time can be made to scale as
log{ B n) for-many operations. This assumption is sufficient for a first order approximation
simce: (B m) is no larger:than 64 for the cases of interest, and sinece achieving the logarithmic

timer usuaily involves a corresponding increase in the area costs.
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Under these simplifying assumptions. the expression for the efficiency in the serial case
shown in Figure 2.10 is the same -as for the heavily pipelined case. The big advantage
of the serial implementation is that it achieves an incremental extensibility not achievable
in the parallel case: if there is enough bandwidth to maintain 8MFlops of computation,
then two 4Mflop serial units can be used without paying the area costs of a full parallel
implementation. Thus the serial implementation provides both efficient use of the silicon
area and allows an incremental increasing of the computing power. The disadvantage of
serial arithmetic is that it cannot use logarithmic algorithms that can be used in parallel
implementations (e.g. Wallace Tree multipliers [18]), which increase the speed of a single

operation.

2.4.2 ,Registei- File vs. Switch

The use of a switch rather than a register file is more efficient in terms of area and is easier
to control. Figﬁre 2.11 shows the area required for both options. The register file has fewer
ports but requires that each port be the full 64 bits wide. The switch has a larger fan in
and fan out but uses narrow serial data paths. For relatively small switching requirements,
the switch is more area efficient. For sake of comparison, compare the Weitek 3164/3364 (4]
chip which has a peak performance of 20MFlops, to the RAP which has a potential peax
performance of 32MFlops. The 3164/3364 has a 32X64 register file with 6 input and output
ports, which requires 6 times the area of the RAP switch which routes data 4 bits at a time,
has 32 input ports, and 24 output ports.

On a more_qualitative level, general routing in Athe case of the register file is made
difficult by the need to route muitiple full width busses. In order to solve the I/O problem
the register file must have multiple ports (6 ports are used in the Weitek 3164/3364) and
the area required to do general routing of these busses is proportional to 2 B* where P is the
number of ports and B is the number of bits. Routing in the serial case is all done within

the switch. The above area comparison negiects a number of the extra costs associated
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INPUT .

' REGISTERS PORTS _ |
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REGISTERS SWITCH PORTS PORTS

Figure 2.11: Register File Area vs. Switch Area

with each of the methods: the register file requires address and decoding logic for each of ‘
its ports and requires bus multiplexing into the functional units, while the switch requires
switch control logic and parallel-serial/serial-parallel conversion registers. '

Control of the switch is easier than control of the register file because control signals
have to changed only once every word cycle, whereas control to the register file must be
available every clock cycle. In the case of the switch, the control signals remain the same
for at least 16 minor clock cycles as data propagates serially through the switch. Delay
paths through the switch can be optimized without worrying about control overhead. In
the case of the register file, there is a control cost associated with every clock cycle since at
each cycle the régioter addresses of source and destination registers must be provided and
decoded.
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2.5 Summary

The RAP architecture uses serial floating-point arithmetic units in combination with a
flexible switch to route data between units. This scheme can lead to a substantial reduction
in the I/0 bandwidth required to sustain a given level of computation. It does this by

eliminating all bandwidth costs associated with storing and retrieving intermediate results.

The RAP is designed with a message passing interface so that it fits into the J-Machine,
a message passing concurrent computer. The RAP is cont@ﬁ by three messages which
allow it to store “methods” and forwarding information in its local memory, and which
allow it to execute these methods on different sets of data. Within this system, RAPs can

be set up in a RAP pipelines, fork operations can distribute work over several RAPs, and -

merge operations can combine the results from several RAPs.

The block diagram of the RAP includes the control blocks, memories, and the datapath.
The control blocks are set up so that the operations of receiving a message, loading operands
into the datapath, computing a problem instance, unloading output results, and sending
result messages can all be pipelined. The main RAP memory is used to store methods and
result forwarding information. Input and output queues are used to buffer incoming and
outgoing messages respectively. The datapath contains the 16 functional units, including 4
add/subtract units, 4 multiply units, and 8 feedthrough units. It also contains the switch

that routes the data between units, input registers, and output registers.

The use of bit-serial arithmetic and a switch, as in the RAP, can be compared to
the use of bit-parallel arithmetic and a register file, as in more conventional approaches.
the seria.l/sv&itc-h approach uses logic efficiently, while using less area, and being easier to
control than the parallel/registers approach. The next two Chapters will concentrate on
two important aspects of the RAP design: the éontrol logic and the datapath design.

e 4




Chapter 3

RAP Simulation and (’ontrol

Logic

I claim 1
confess plainl

— ABRAHAM LINCOLN in Lett:
She makes me wash, the

widder eats by. a bell, she
by a.bell - everything’s so a

— MARK TwAIN in The A

In: order ta;design: and. debug the control logic, and to
transfer level. simulator was written to simulate the RAP. T
Commeon, LISP and: runs on the SUN workstations. This

organization: and: presents the flow charts for the control lc
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¢t to have controlled events, but
that events have controlled me.

to A.G. Hodges, April 4, 1864
comb me all to thunder... The

oes to bed by a bell; she gits up
‘ul reg’lar a body can’t stand it.

rentures of Tom Sawyer (1876)

aluate performance, a register
simulator is written in LUCID
1apter describes the simulator

c of the RAP chip.
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3.1 Simulator Description

The simulator is a discreet event simulator: events are scheduled on a priority queue, and at
each tick of the clock events scheduled for that time are taken from the queue and executed,
causing other events to be scheduled. The simulator was written in an object oriented
fashion using the LUCID LISP flavors package [22]. Several RAPs can be simulated at
once. Commands are provided to set up the simulation, run the simulation, and observe

the state of the RAPs as the simulation progresses.

A number of simplifying assumptions were made. For instance, memory for methods
was allocated statically in fixed size blocks. In the real RAP memory management will be
done more efficiently by storing methods in variable sized blocks. Another simplification is .
that the simclator knows nothing about the switch topology: it simply executes the given
operatioxis. Switch constraints must be enforced by the user or compiler that generates the
sequence of switch configurations in the method. These simplifications do not affect the

performance results ebtained.

3.1.1 Simulator Organization

The simulator code is divided into the following main components:

1. Global variables and Constants. These inclﬁde such things as the current time
step, the locations being watched at each simulation step, and the size of the RAP
memory and queues. They also include simulator parameters which represent the de-
lay associated with certain events such as reconfiguring the switch, or a word arriving

at the network interface.

2. Definition of a RAP object type. The RAP is described as an object consisting
of all the sub-blocks of the RAP. Each sub-block of the RAP in turn is aiso described
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as an object. The major components of the RAP object are the input and output
queues, the memory, the datapath, the network, the control, and the priority queue

of pending events.

3. Internal Ewent Coatrol Programs. The input control, output control, switch
conizal, amd network imterface comtrol, are all described as RAP methods. They
explicitly describe the RAPs internal control. Separating the control programs of the
RAP means that the control algorithms are directly implemented and they have a
straightiorwand transiation to hardware.

4. External Event Control Programs. RAP methods are written in order to control
events which are not directly controlled by the internal control of the RAP, such as
words arriving at or leaving from the network interface.

5. Priority Queue Manipulation. Procedures used tov manipulate the priority queue
of events. The queue is just an ordered list.

6. Command Programs. Programs written to set up a simulation, to rur the simu-
lator, to look at RAP state, and to perform other useful functions for debugging and
abserving results.

3.2 Control

The control of the RAP is divided into four independent sections: input control, output
control, switch control, and network interface control. Input control executes incoming
messages, ax;d controls- the input to the datapath, and most memory operations. Output
control is responsible for constructing result messages in the output queue, while switch
control is responsible for loading switch configurations at the correct time. The network
interface logic controls how words coming from the network are put into the input queue

and how words are sent out to the network from the output queue. These control blocks
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must communicate to synchronize the different stages of the calculation, and to prevent the

queues from overflowing.

In order to implement the control, various registers and signals were introduced to
interface with the memory, the network, and the datapath. These control registers and
signals are listed below. These list should be used as references when going through the
control flow charts which follow. '

The control registers are:

1. Queue registers: HEAD and TAIL registers for both the input and the output
queues, referred to as HEADIN, TAILIN, HEADOUT, and TAILOUT.

2. Memory registers: Four registers (A0-A3) used to read and write memory.

3. Datapath Input/Output control registers: Six bit-vector registers used to con-
trol the loading and unloading of the input and output operand registers.These regis-
ters contain 1 bit for each input or output register.

(a) AIRREF,AIRCNT: Address of Input Registers Reference and Count registers.
These registers are used to control the loading of the input registers. AIRREF
identifies which input registers should be loaded for the method currently exe-
cuting. AIRCNT points at the next input register to be loaded.

(b) AOREF,AORCNT1, AORCNT2, AORCNT3: Address of Output Registers Ref-

* erence and Count registers. These registers are used to control the unloading

of the output registers. At any given time there may be four problems in the

da..ta.pa.th: one being loaded into the input registers, one being being calculated

by the AUs, one being shifted out of the AUs into the serial part of the output

registers, and one being unloaded from the parallel part of the output registers

‘ into the output queue. Each of these four registers corresponds to one of the four

possible problems in the datapath. The three AORCNT registers also have an
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-extra bit'which indicates whether the problem is the last problem of the message.
AORCNT3 is used to:rpoint at the successive output registers as they are being

unloaded.

4. Configuration control registers: Tlhese registers control the switch and the se-
quwence of configurations it runs through.

(=) SWITCH: register used to store tlie current switch configuration.

(B) CRREF1,CRREF2;CRCNT: Configuration Register Reference and Count regis-
rers. These registers are used to control the loading of switch configurations.
CRREF] contains the number of configurations in the method which will be
executing mext, CRREF?2 contains the number of configurations of the method
which is catrently executing, and CRCNT Xeeps track of which éo;x}i"gura.tion in
the method is carrently loaded.

5. Network Interface Registers: These registers are used to send and receive ‘words
from the network. '

(a) NET-IN-REG: Register used to recéive a word from- the network.

- (b) NET-OUT-REG: Registéz used to seird 2 word £o thé nétwork.

6. QIN-REG: Register in which the word dequeued from the input queue is stored.
The control signals used' to communicate between the different control blocks are:

I.. eventestempiiate: indicates whether the input control can’ load a new fdr’wa'.rdin‘g'
template into- the template buffer. Set by the output control, reset by the input
controk.

2. go-download® indicates whether the next problem can be shifted into the AUs. Set

whent 3 download is- allowed to occur; reset by the input comtroi on a download.
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3.

go-unload: indicates whether the output registers are ready to be unloaded. Set
when the results of a calculation are uploaded into the parallel part of the output

registers, reset by the output control.

. reconfigure: indicates that the switch should be loaded with the next configura-

tion. Set internally a predetermined amount of time after a new problem has been
downloaded or after the switch has just been reconfigured, reset by the switch control
logic.

. templateO: indicates whether the default template is being used. Set and reset by

the input control.

net-in-status: indicates whether the network has a word ready to be enqueued. Set

by the input network logic, reset by the input enqueuing logic.

net-out:status: indicates whether the network is ready to receive an output word.

Set by the output network, reset by the the output dequeuing logic.

end-count: counts the number of complete messages that are in the output queue.
Incremented every time the last word of a message is inserted into the queue, decre-

mented every time the last word of a message is sent out to the network.

. started-before-end: indicates that message transmission began because the output

queue filled up rather than because a complete message was ready to transmit. Set

and reset by the network output control.

3.2.1 Inppt Control

The input control flowchart is shown in Figures 3.1 through 3.3. It is important to note that

throughout this flowchart there are two types of implicit wait states. The first is reading

the input queue. which may require waiting until a word is present in the queue. The

second is reading memory, which may require a deiay of one cvcle if the switch control is
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reading memory.. The memory has an input pert and an output port so that no waiting is
required when writing memeory, although this couid easily be modified to assume a single

port memory.

Initiaily the input controk loocks at the first. word of a message and begins a control.
sequenrce based. on: the: type. of message- [P the message is a- SM or ST message, then
the-method: or template: is simply stored. ir memory. [n the case of a C+E.the control
sequence is more complicated: first the various registers are set up to prepare execution of
the method.. the NODE ID/REPLY [D is inserted into the template slot reserved for it in
memory; ard: the: first set of operands are-loaded.into-the input registers. At this point, the
controt munsy makes sure- that no- interference will oecur with the previous problem. If the
previous message execution has finished with the three words of template buffering (shown
as TEMPL1, TEMPEZ, and TEMPLJ), then the input control loads the new template into |
the template buffer loeations. Then, if the pzevious message is finished with the datapath,
the input cantrol sets up the switch sequencing registers-(A2;, A3, CRREF2, CRCNT) and
begins:-the calculation. ’

The input control continues loading and-calculating problem instances until the end of
message: is. reached. The input: control only allows: a. download to occur if the go-download
sigmal is asserted. The go-dounload signal is only asserted if the previous problem has run
througit its: 1ast confignration and. will have sufficient time to unload its results, and there is
sufficient: mom: in. the-output queue: to hold: the:results (the go-download signal is discussed

i more- detail in theswitch: control section).

The: input control' logic transmits- information to the output control logic as to which
registers. contain: results,, using the: AORCNTL, AORCNT2, and AORCNT3 registers. The
imput cantrol only has. to load the ACRCNTL register and this value gets shifted automati-
cally from: AORCNTI to: AORCNT2 following the last configuration, and from AORCNT?2
tor AORCNTL Y once the results are uploaded into the parallel portion of the output registers.
AORECXTY ix used by the output control logic.
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Dispatch on first word of message
AQ = (HEADIN) starting address
Al = (HEADIN) tempiate sddress
HEADIN « HEADIN + ¢

SM, ST

OIN-REG = (HEADIN)
HEADIN « HEADIN + 1

C+E

AIRREF = (A0) Input registers to load
AIRCNT = (AO) input registers 0 oad
AORREF«= (A0) Output registers to unioad
CRREF1 = (A0) # of configurations

Al=Al4+2
Y

(A1) = (HEADIN) NODE {L/REPLY 1D
HEADIN « HEADIN + 1

(A0) = QIN-REG
AQ= A0+ 1

Al=Atl.2

(AIRCNT) = (HEADIN)
HEADIN « HEADIN + 1
AIRCNT = next input register

create-template
= ready ?

Figure 3.1: Input Controi Flow Chart (part 1)
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Figure 3.2: Input Control Flow Chart (part 2)
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| AORCNT1 = AORREF ot end ] AORCNT1 = AORREF.end |

DOWNLOAD
go-download = wal
AIRCNT = AIRREF

QIN-REG
end ?

(AIRCNT) « QIN-REG
AIRCNT « next input register

-

(AIRCNT) » (HEADIN)

HEADIN « HEADIN 4 1

AIRCNT = next input register
19

Y N
last operand
- . loaded?

Figure 3.3: Input Control Flow Chart (part 3)
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3.2.2 Qutput Control

The output control flow chart is shown in Figure 3.4. The output controi is responsible
far loading: the-resuit messages into the output queue. First the tempiate is output which
contains the necessary message header information. If the results are to be sent to their
final destination, the templated signal is. active and only one word of the stored tempiate
is. needed. Qtherwise, all three words of the template are needed to forward the results
to another RAP for further computation. The output. control then nnloads the output
registers aiter the completion of each problem in the message. Once all the resuits of the
message: heing, processed are unloaded into-the output queue, the “end” word is appended
to-the-queue:to terminate the message. Note that a problem never begins calculating unless
it is guaranteed that there is enough space in the output queune to store its output results.
This- means that the.outpat control wx]l never stall in the middle of unloading the output

registers.

3.2.3 Switch Control

The switch control flow chart is shown in Figure 3.5. Every time the switch has to be
reconfigured the switch control loads the next configuration into the switch register. In the
case that a new problem is starting and the first configuration has been loaded, then the
switch logic also determines whether the .new problem can be downloaded. The problem is
allowed to be downloaded if two conditions are satisfied:

1. There is enough room in the output queue to store all the results that will be generated

by the computation.

2. Starting the new problem will not cause any results to be lost from problems currently
in the datapath. This could occur for instance when the previous nroblem does not

have time to finish unloading che output -egisters pefore the resuits ‘rom -he next
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(TARLQUT) = tempit
TALOUT = TAILOUT + 1

L]

(TALOUT) = templ2
TAILOUT = TAILOUT + 1

TALOUT « TAILOUT + 1 '
create-tempiate « ready

(TAILOUT) = {AORCNT3)
TAILOUT = TAILOUT + 1
AORCNT3 « next output register
go-unioad = wait

{TAILOUT) « "end”
TAILOUT » TAILOUT + 1
end-count = end-count + 1

. Figure 3.4: Output Control Flow Chart
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CRCNT »
CRREF2 7

SWITCH = (A2)
A2=A2+1
CRCNT « CRCNT 4+ 1

reconfigure = wait

Pigure 3.5: Switch Control Flow Chart
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(TARLIN) = NET-IN-REG
TAILIN « TAR + 1
net-in-status = wal

Figure 3.6: Network Input Control Flow Chart

problem arrive. This difficulty is avoided by requiring that each method be at least
four configurations, guaranteeing that there will be at least 16 clock cycles to unload
the output registers. This is not a costly solution since any method which does useful
calculations must be at least three configurations anyway, the number required to do

one add/subtract or multiply.

3.2.4 Network Control

The network control consists in the interface logic between the input queue and the network
and the output queue and the network. Flow charts are shown in Figures 3.6 and 3.7 for
the network input logic and the network output logic respectively. The network input logic

fills the input queue by taking a word from the network each time a word is ready and
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' l'ET -OU'I'-BEB (HEAwUT)

end-count = end-count -1 ==

Figﬁae 3.7: Network Output Control Flow Chart
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there is room in the circular queue. The network output logic suppiies output words to
the network beginning when a complete message has been accumulated in the queue or the
queue is getting too full, whichever comes first. The number of complete messages in the

queue is kept in the end-count variable.

3.3 Summary

This Chapter presented the flow charts for the control logic of the RAP, including the input,
output, switch, and network interface control logic. Registers and signals needed to control
the RAP are defined. This logic was verified using a RAP register transfer level simulator -
and it is straightforward to translate the control flow charts into logic circuitry in the form -
of random logic or small PLAs. ' .




Hardware Design

" Thunder is good, thunder is impressive;
but it is lightning. that does the work.

— MARK TwaIN, in: a: Letter to an Unidentified Person (1908)

Damn.the. torpedoes. - full speed ahead!

— DaviD GLASGOW FARRAGUT, at the battle of Mobile Bay
August 5, 1864.

Thia chapter discusses thie hardware design of the- RAP, concentrating on the design of
the: floatingpoint: units. Tlie-hardware design can be divided into different distinct parts:
thie dtapatdhy. the. control;, the: on: chip memories; and: thé network interface. The most
critical'portioniof-the design.in terms.of proving the feasibility of the RAP is the datapath,
containing- the- foating-point: units and the-switch. The floating-point' units must achieve
the-targes offam 8OMHz clock, and:be-small enough: so that: several serial units can fit on 2
singlé-olii: Thie-switclt must: be able-to-feed; data through. at: the same speed: at whicht the

arithmretic- unitss are- beirg: ciocked: The other portions of'the design such 28 the memorv

.1
[o V]
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and control blocks are straightforward to implement, and the network interface is similar

to the design in the MDP,

The floating-point rate achieved by the adder/subtractor and the multiplier in the cur-
rent design is 1.57MFlops per unit with area estimated to be 3.2M A2 for the add/subtract
unit and 5.6M A? for the multiply unit. The design could be modified to be more highly
pipelined resulting in an increased performance of 4.70MFlops per unit, without signifi-
cantly increasing area. When used in the RAP, these modified units would run at 4dMFlops,
because some overhead time is required to change switch configurations. A RAP contain-
ing four adders/subiractors and four multipliers has a peak performance of 32MFlops and
about 40M \? of the chip area is taken up by the arithmetic units.

The remainder of this chapter discusses the hardware design of the datapath in detail.
Section 4.1 describes the number representation and conventions used. Section 4.2 presents
a comparative study of a number of 4-bit serial adders, the most critical component of
both the floating-point adder and the floating-point multiplier. Section 4.3 describes the
operation of the floating-point adder/subtractor and the floating-point multiplier. The
remaining components of the datapath design, including the switch and register design, are
presented in section 4.4. Different ways of improving the design of these units is described
in 4.5. Finally, section 4.6 briefly presents the fixed-point RAP, a chip designed in a course

project to experiment with some of the RAP ideas.

4.1 Numbering System

4.1.1 Format

For simplicity, the non-standard floating-point format shown in Figure 4.1 was chosen. It

consists of an 8 bit, two's complement exponent field. and a 56 bit, two’s compiement man-
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63 56 55 54 0

General 2s. compiement | ' | 2's compiement
Format exponent 1o mantissa

Py

ginary:

peint
Querdiove ! E 1T T 1T ¢ t 1 ¢ XXX, . . . . . . XxX
Underﬂw:TOfOOQOOO XXX. . . ... .XXX
Zsro LfOOOOOOO o0 . . .. .. .000

Figure 4.1: Floating-Point Format

tissa field. This format departs from such standards as the IEEE Floating-Point Standard
[3, 15] but has the advantage of permitting a uniform treatment of the exp;ment and man-
tissa in two’s complement form. The exponent is a two’s complement number E in the
range —128 < E < 127. The mantissa has a binary point following the first bit so that the
mantissa: M. falls in the range —1 < M < 1. The resulting number is equal to M x 2.

£1.2%2 Normalized Numbers

Only: normalized. numbers- are allowed in our numbering system. A normalized foating-
point number is one in which the mantissa M falls in the range —1 < M < -1/2 when
M. is:negative and in the range 1/2 < M < 1 when M:is positive. This implies that the

second: bit: of a-positive normaiized mantissa must aiways be a 1 and that the second bit of
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a negative normalized mantissa will always be a 0 e.g. 01010001011 is a normalized positive
. mantissa, 00101000101 is an unnormalized positive mantissa, 100111100000 is a negative
normalized mantissa, and- 111100001100 is a negative unnormalized mantissa. Allowing
only normalized numbers as inputs to our floating-point units prevents the unnecessary loss

of precision that results from using unnormalized mantissas, and simplifies the logic !.

4.1.3 Overflow and Underflow

The result of an operation can fall outside the range of representable normalized numbers,
either by requiring an exponent greater than or equal to 127 (overfiow) or by requiring
an exponent less than or equal to -128 (underflow). Two exponent values are reserved to .
indicate when either of these conditions occur. The most positive exponent, 127 decimal or
01111111 binary, is used to represent a x;umber which has overflowed. The most negative
exponent, -128 decimal or 10000000 binary, is used to represernt a number which has under-
flowed. When an overflowed or underflowed numﬁer is used in an operation the conventions

shown in table 4.1 are followed.

4.1.4 Zero Representation

It is convenient to have a special representation for zero. Zero is represented by the most
negative exponent (-128) and all zeros in the mantissa. As is shown later, this avoids a

problem which occurs when adding a number to zero.

1The IEEE Standard for Floating-Point Arithmetic uses “denormalized” numbers. A denormalized num-
ber consists in an unnormalized mantissa and a special exponent (usually the most negative). It allows the
representation of numbers that cannot be represented as normalized numbers due to the fact that the the
exponent required is smaller than the smallest available exponent. The RAP does not allow denormalized
numbers.
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Operand A | Operand B | A+B | A-B i AxB |
Overflowed Overflowed | Overflowed Overflowed Overdowed |
Overflowed Underflowed Overflowed Overflowed Overlowed |
Underflowed Overflowed : Overflowed Overflowed Overtowed
Underflowed Underflowed | Underflowed Underflowed Underflowed
Overflowed | Normalized # | Overflowed .Overflowed Overflowed
Normalized # | Overflowed Owerflowed Qverflowed Overflowed
Underflowed | Normalized # | Normalized # | - Normalized # | Underflowed
‘Normalized # | Underflowed ! Normalized # { Normalized # | Underflowed

Table4.1: Overfow/Underflow Conventions for the Add. Subtract, and Multiply Operations
4.2 Design of a 4-bit Adder

Thke critical component of the circuit design and the one most likely to limit the speed at

which the floating-point units can be run is the 4-bit adders usedlin the design. This is

because in the design, signala must propagate through the four bit carry delay and through

one or two- additional logic levels within one half clock period. A number of 4-bit adders .
were cmadered including:

1. A simple precharged Manchester carry chain [36).
2. A precharged Manchester carry chain with positive feedback pulldown circuitry.
3. 4-bit lookahead adder using domino logic [36].

4. Ripple carry adder with optimized carry path.

5. A quaternary full adder [5].

These adders were evaluated in terms of the area they required and the speed they
achieved. The quaternary full adder was discarded as a possibility because of area con-
straints: sintce it requires encoding the incoming four bit value into a new eight bit value. it

doubles the latches and wires in :ach stage of the datapath. [t aiso requires 2acoding and
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Figure 4.2: General 4-bit Adder SPICE circuit

decoding circuitry which is not convenient when all that is needed is a single 4-bit adder.
The remaining four adders were simulated in SPICE. The general form of the circuit used
for simulation is shown in Figure 4.2. The parameters varied in order to increase speed
were the size of the transistors in the input carry circuitry and the size of the transistors
in the carry circuitry itself. Detailed SPICE models, sample waveforms, schematics, and

layout for the different 4-bit adders are found in Appendix A.

The signals that are critical in terms of timing are the last carry out which must be
latched, and the 4th bit of the sum which is the last bit of the sum to be calculated. Table 4.2
shows the time required for the signals to propagate to points A and B of Figure 4.2, where
point A is the point at which the last carry out is stored, and point B is is the output of a
register in which the most significant bit of the sum is stored. These circuits approximate
the worst case capacitive load found in the floating-point circuit design. Because the Ripple
Carry adder does not use precharging, its operation is different from the other adders, and
the delay is measured to points C and D of Figure 4.2 instead of to points A and B. The

speed target for the design requires that the complete calculation happen in one half cycle
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Adder Type Carry | Sum | Area Estimate
Manchester carry | 4.2ns | 4.2ns 48.8K\*
chain
Manchester carry | 3.6ns | 3.8ns 52.4K\¢
chain with kicker
Carry lookahead | 2.8ns | 3.2ns 81.9K\?
Ripple Carry 4.4ns | 5.0ns 47.2K\? -

Table 4.2: 4-bit Adder Delay and Area using CMOS 2um Worst Speed SPICE Models.

or about 6ns. All four circuits meet this requirement. Also shown in Table 4.2 are area
estimates for each 4-bit adder. In order to meet speed goals, the adders use many large
transistors (as wide as 48um). As a result the area estimates are approximately twice as

large as they would be if speed was not crucial, and smaller transistors were used.

The precharged Manchester Carry circuitry and the Manchester carry circuitry with
positive feedback pulldown circuitry are shown in Figure 4.3. For a carry of only four
bits the precharged Manchester carry chain with positive feedback is marginally better
than the simple precharged Manchester carry circuit. Its real benefit is only manifested in
carry chains longer than four bits. This circuit also has the disadvantage of having a noise
margin equal to the threshold voltage of the p-type transistor: a drop of one threshold on
the precharged carry node will activate the positive feedback and pulldown the carry line.
The precharged carry lookahead circnit (see Appendix A) is the fastest circuit. The cost
is a substantial increase in the area required to implement the circuit because each stage
requires its own special carry circuitry which takes inputs from all previous stages. Finally,
the ripple carry circuit of Figure 4.4 consists of two different stages, each with transistors
sized to minimize delay. It is the slowest in terms of speed, though it requires less area than

the Manchester Carry circuit due to the absence of clock lines.

The best choice for the 4-bit adder in terms of satisfying the speed requirements while

using the minimum area is the simple Manchester carry chain. This circuit can be optimized
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further by gradually reducing the size of the pulldown transistors at each stage. This works
because stages at the end of the carry chain have less capacitance to pulldown than the
stages at the beginning of the carry chain, o they can use smaller transistors to achieve
the same speed. The gradual reduction in size of the pulldown transistors increases the
pulldown speed of the stages at the beginning of the carry chain by reducing the diffusion
capacitance present on the carry line.

4.3 Floating-Point Units

A serial floating-point adder/subtractor and a serial floating-point multiplier were designed.
Both units have a latency of 51 clock cycles of 12.5ns. A new problem can be shifted in as
the previous result is being shifted out, so that a complete result is produced once every 51

clock cycles. This corresponds to a rate of 1.57MFlops per unit.

The implementation is 4-bit serial in order to make full use of the clock period. In
single bit implementations signals propagate in times much smaller than the smallest clock
period that can be reliably distributed without clock skew problems, and thus do not make
full use of the clock period. Manipulating four bits at a time means that there is more
work to be done at each cycle, and better use is made of the clock period. Efficient serial
algorithms exist for doing arithmetic one or two bits at a time [5, 23] and these algorithms

have straightforward extensions to doing four bits at a time.
The target clock rate of 80Mhz was chosen for several reasons:
1. Distributing an 80MHz clock over a large CMOS chip is an ambitious but feasible
problem to solve.

2. SPICE simulations of the different 4-bit adders indicate that carefully designed 4-bit

adders can achieve this target speed.
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3. 80MHz is a convenient multiple of 20MHz, the clock rate at which it is expected the

RAP memory and control will run.

Doing floating-point serially is more complicated than serial fixed-point because of the
of the interaction between the exponent logic and the mantissa logic. In particular, once
the exponent and the mantissa of the result have been calculated the number must be
normalized: a normalized number in our numbering system is one in which the mantissa
M satisfies 1/2 < |M| < 1. The mantissa is normalized by shifting it left or right with a
corresponding decrement or increment in the exponent value. This interaction requires that
results of the exponent logic be stored in latches while the mantissa calculation is taking
place. The exponent is then adjusted based on the result of the mantissa calculation. Since
the exponent has to wait for the mantissa calculation to be finished before the adjustment
can be made, there is increased latency. In the case of a ﬁoating-point add, there is addi-
tional interaction between the exponent and the mantissa: based on the difference between
the exponents of the two numbers, one mantissa must be shifted before it is added to the
other mantissa. This interaction between exponent and mantissa calculation is the major

cause of complexity in the circuit design.

4.3.1 Floating-Point Adder/Subtractor

The block diagram for the floating-point adder/subtractor is shown in figure 4.5. Operands
A and B are fed into the unit four bits at a time, exponent first then mantissa, low order bits
first. A start signal initiates the control block which is a large shift register that provides
the control signals to various parts of the circuit. The floating-point add or subtract can
be divided into the three steps listed below, which are illustrated in Figure 4.6 using a four

bit exponent and a twelve bit mantissa.

1. ALIGN STEP. In order to add two floating-point numbers they must be adjusted

to have the same exponent. If the difference between the two operands exponents is
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Figure 4.5: Floating-Point Adder/Subtractor Block Diagram
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Initial C I
Exponent Mantissa
0010 010000111000
1111 101110100101
After Align Step
0010 - 010000111000
0010 1111011101 0(7)operandis
sign extend @ rounded up
bits
After Add Step
0010 001110101101
After Normalize Step
0001 011101011010

Figure 4.6: Steps in the Floating-Point Add
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EXPDIF the mantissa of the operand with the lowest exponent must be shifted down
EXPDIF bits, dropping the EXPDIF least significant bits and shifting in EXPDIF
sign extension bits, before it is added to the other mantissa. In the block diagram
ADD-EXP-LOGIC subtracts the two exponents and uses the result to control the
DELAY block. The DELAY block performs the alignment of the mantissas so that
they can be correctly added. In the case of adding zero to a non-zero number, the
result should be the non-zero number unchanged. Requiring that the representation
of zero have the most negative exponent guarantees that this will occur. If zero was
allowed to have an exponent larger than the non-zero number, the ALIGN step would
cause the nom-zero mantissa to be shifted down and bits would be lost in the final

result.

2. ADD STEP. The adjusted mantissas are added or subtracted in the MANTISSA-ADD

block, rounding to the nearest number.

3. NORMALIZATION STEP. The result of the mantissa add or subtract may not be nor-
malized and may have to be adjusted. A positive number must have only one leading
0 in the mantissa and a negative number only one leading 1. The COUNT-01 module
counts the leading Os or 1s and provides normalization information to the ADD-EXP-
NORM block and the ADD-MANTISSA-NORM block. The ADD-EXP-N bRM block
takes the largest of the original exponents and subtracts the number of excess man-
tissa sign bits provided from the COUNT-01 module. The ADD-MANTISSA-NORM
removes the excess sign bits from the mantissa result. In the case that the result of
the MANTISSA-ADD overflows, the exponent is incremented and the correct sign is
added to the mantissa.

Logic is included to take care of overflow and underflow, both in the case where the
operands have already overflowed or underflowed, and in the case that the calculation itself
causes an overflow or underflow. Detailed schematics of the floating-point adder/subtractor

are found in [12].
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Figure 4.7: Floating-Point Multiplier Block Diagram

4.3.2 Floating-Point Multiplier

The block diagram for the floating-point multiplier is shown in figure 4.7. Operands A and
B are fed into the unit four bits at a time, exponent first then mantissa, low order bits first.
A start signal initiates the control block in the same way as in the adder/subtractor. The
floating-point multiply can be divided into the two steps listed below, which are illustrated

in Figure 4.8 using a four bit exponent and a twelve bit maantissa.

1. CALCULATE STEP. The exponents are added in the MULT-EXP-LOGIC and man-
tissas are multiplied in the MANTISSA-MULT. These two operations are independent.

2. NORMALIZE STEP. The result of the mantissa multiply can have one or two extra
sign bits. One extra sign bit occurs because when multiplying two two’s complement
mantissas, the full precision result always has an extra sign bit. This sign bit is

dropped and an extra low order bit is added to the mantissa. If there are two extra
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\nitial O |
Exponent Mantissa
A: 0010 010000111000
B: 1111 101110100101
After Calculate Step
0001 111011011010
extra bits
After Normalize Step
0000 101101101000
Figure 4.8: Steps in the Floating-Point Multiply
sign bits, then both extra sign bits are dropped and the exponent is decremented. .

Logic is included to take care of overflow and underflow, both in the case where the
operands have already overflowed or underflowed, and in the case that the calculation itself
causes an overflow or underflow. Detailed schematics of the floating-point multiplier are

found in [12].

Mantissa Multiply Algorithm

The algorithm used to multiply the mantissas is an extension of an algorithm described by
Lyon in [23]). ‘This algorithm does multiplication of two two’s complement numbers using

Booth encoding [2, 18]. The extensions and modifications to the algorithm include:

1. Doing four bits of each operand at at a time rather than one or two bits at a time.

2. Doing Booth encoding as a separate circuit at the beginning of the multiplier pipeline.
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Figure 4.9: Maatissa Multiply Pipeline

3. Design of a special final stage which eliminates the extra sign bit which occurs when
multiplying two’s complemented numbers (there is always at least one extra sign bit

except for the special case when minus one is multiplied by minus one).

Full length multiplication of N bit operands gives results of 2N bits long. Practically, if
the operands are considered as fractions between -1 and 1, this means that the bottom N
bits must be truncated in order to represent the result in an N bit field. In Lyon’s algorithm
each partial product and partial product sum is restricted to N bits. Figure 4.9 shows how
the pipeline is set up. Figure 4.10 shows an example of a multiply of two positive binary
fractions, that gives a flavor of how the algorithm proceeds. Each stage of the multiplier
is responsible for generating and adding a partial product (PP) to the partial product sum
(PPS), and is responsible for discarding the bottom bits of this result. In the case that one
bit is done at a time, each stage generates a partial product, adds it to the sum of partial
products coming from the previous stage, and passes this result to the next stage truncated

by one bit. The final stage outputs the N bit result.

Doing two’s complement numbers is more complicated because partial products can
be negative, and have implicit sign extension bits that extend infinitely to the left. For
a detailed description of two’s complement multiply algorithms and the handling of the

implicit sign extension, the reader is referred to Lyon's paper (23].
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Figure 4.11 shows a simplified view of what the multiplier stage looks like. Operands
are shifted in least significant bit first. Each “digit” Yi (which can consist of one, two, or
four bits) of the multiplier gets stored in the ith pipeline stage and generates the ith partial
product by looking at the digits Xi of the multiplicand. The ith partial product then gets
added to the incoming partial product sum. Note that to generate each partial product, the
digit of the multiplier must “see” all bits of the multiplicand e.g. digit Y1 of the multiplier
must get to pipeline stage 1 before the least significant digit X0 of the multiplicand. so
that the correct partial product can be generated. This is a problem if both operands are
being shifted in at the same time with the same delay: any given digit of the multiplier
will never catch up to the digits of the multiplicand that were shifted in before it. To solve

this problem the path of the multiplicand is made to be twice as slow as the path of the

multiplier by inserting an extra delay element. This allows the ith multiplier digit to reach

the ith stage before the least significant digit of the multiplicand. The control signal is used
. to control when the Yi digit is latched.

If only a single bit is done at a time, then N stages are required for N bit operands,
one stage for each bit of the multiplier. If instead two bits of the multiplier are shifted
in at once, then the logic for these two bits can be combined and the number of stages is
reduced to N/2. Furthermore, doing two bits at once means that modified Booth encoding
can be used. This is a technique in which each partial product to be added is generated
without requiring another adder, but requires only simple shift and invert operations. The
two bit case can be extended to doing four bits. This is done by taking the four bits of the
multiplier operand, dividing it into two groups of two bits which are each modified Booth
encoded. Then two partial products are calculated, one associated with each of the Booth
encoded fields. -These two partial products are added to the partial product Sum in a single
clock cycle, with one partial product being added on the first phase of the clock and the
other one on the second phase. The cell is complicated by the fact that the multiplicand
arrives in groups of four bits, meaning that six bits of each of the two partial product within

. a cell are calculated in one clock cycle. Furthermore these partial products overlap by four
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Cell Area

Static Register 3706A
Shifi Register 2703A2
Gate 16572
Control Shift Register | 16218)2
4-bit Adder 484162

Table 4.3: Basic Cell Area Estimates

bits. The interested reader is referred to the schematics of {12] for details.

4.3.3 Area Estimates

In order to estimate area, the area for a number of basic cells was determined by laying
them out or by looking at previous layouts. These cells are listed in Table 4.3. In this Table,
the estimate used for the area of a gate is one half the area of an XOR gate, which is larger
than the area required by simple one or two input gates, but smaller than most complex
gates. This estimate is conservative since most of the gates in the circuit are inverters, pass
transistors, 2 input NOR gates, and 2 input NAND gates. The Control Shift Register is a
special register used by the control circuitry, and is estimated to require the area of 6 shift

registers.

For each of the floating-point units, the number of each type of basic cell was counted
and used to give an area estimate for the entire unit. The area of sub-circuits which did
not fit into one of the categories was approximated by looking at how many of the basic
cells would take up the same area. Table 4.4 shows the break up of area for each of the

floating-point units. 20% additional area is included for wiring.
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Cell Adder/Subtractor Multiplier
Number | Area (KA%) | Number ! Area (K \?%)
Static Register 90 334 33 122
Shift Register 291 787 598 1616
Gate 255 423 370 613
Control Shift Register 43 697 51 827
4-bit Adder 8 387 30 1452
20% Wiring X 526 X ! 926
Total Area 3.2M\¢ 5.6M\*

Table 4.4: Floating-Point Unit Area Estimate

4.4 Other Hardware Components

The remaining hardware components of the datapath are the registers and the switch. Input
and output register cells which perform parallel to serial and serial to parallel conversion

respectively are shown in Figure 4.12,

The switch circuitry is shown in Figure 4.13. Precharged lines going to the arithmetic

units are conditionally connected to one of the inputs based on the decoder lines.

4.5 Hardware Improvements

A major disadvantage of the current floating-point unit design is that two problems cannot
be pipelined one immediately after the other. The units have a pipeline latency of 51
clock cycles. This is just over three word times, where a word time is 16 clock cycles and
corresponds to the time required to shift a complete operand into an AU. Ideally it should
be possible to look at the unit as a three stage pipeline, and have three problems in the
unit at once. Currently there must be a two word time gap between when consecutive
problems get fed into the units, leading to a performance which is only a third of that

which is possible.
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Fortunately, the units can easily be modified to allow this type of pipelining (these
modifications were not implemented due to time constraints). The problem which currently
prevents this type of pipelining is that certain values are stored in register cells (e.g. the
exponent waiting for the normalization step), and the contents of these registers must not
be written over by values coming from the next problem. This problem is solved by having

two levels of storage, and in some cases three levels, so that no information is lost.

In the case of the adder/subtractor, a new variable delay module needs to be designed.
The variable delay is currently designed as a shift register with a variable number of stages:
if the first problem entering is delayed more than the following problem then they will
interfere with each other. The simplest solution to this is to design the variable delay as a
shift regi.ster with constant delay, but where the output can be tapped from different points, -
thus giving a variable delay. The sign extension-logic is moved to the output of this shift
register so that when the most significant bit gets shifted through, all bits thereafter will

be sign extension bits.

4.6 RAP Fixed-Point Prototype

A RAP test chip (Figure 4.14) that does 16 bit fixed-point arithmetic has been designed
by MIT students Stuart Fiske, Josef Shaoul, and Petr Spacek in order to investigate some
of the ideas described above, in particular the idea of having serial arithmetic AUs in
a reconfigurable datapath. The chip was fabricated and tested in MOSIS 3um Scalable
CMOS technology.

The block diagram of the fixed-point RAP is shown in Figure 4.15. It consists of a
bank of eight 16 bit input registers, twelve 9 bit switch configuration registers, a datapath
consisting of a switch and several AUs, and eight 16 bit output registers. The datapath
is a three stage pipeline, each stage uses four AUs and is connected to the next stage hv

a statically reconfigurable sparse crossbar switch. as shown in Figure 4.16. The AUs are

—
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16 bit, two-bit serial Arithmetic Units. Each AU takes three operands and is capable of
doing multiplication, addition, subtraction of two of its operands while passing the third

unchanged, or of multiplying two of its operands and adding/subtracting the third.

Operation proceeds as follows: the switch registers are loaded using the bit parallel
input bus and then feed statically into the switch to determine the switch configuration and
the AU functionality. The input registers are also loaded using the input bus, and then
shift serially into the first stage of the switch. Calculations take place as the operands and
intermediate results propagate through the three stages of the datapath, until the results
are shifted into the output registers. Finally, results are unloaded onto the bit parallel
output bus. New input operands can be loaded into the input registers as the operands
from the previous problem are shifting into the datapath, and similarly, the results from -
the previous problem can be unloaded from the output registers as results are shifting out
of the datapath. This means problems can be pipelined and a2 new problem can begin once

every nine clock cycles.

Although the switch setup is different than that of the floating-point RAP, this chip
demonstrates that the switch can be efficiently implemented: about 12% of the total chip
area is devoted to the switch and switch control. This percentage will be much smaller in
the case of the 64 bit floating-point operations because the AUs and registers will be much

bigger.

The chip was tested up to 8.33MHz giving a peak performance of 0.93Mops (Mega
operations per second) per functional unit, and 11.1Mops for the entire chip. Testing speed

was restricted by the limits of the test apparatus used.
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4.7 Summary

This Chapter addressed some of the more important issues of the circuit design of the RAP
datapath. The schematic level design of a 4-bit serial floating-point adder/subtractor and
a 4-bit serial floating-point multiplier has been carried out. The floating-point number
representation used in the design is developed, based on a format consisting in an 8 bit
two’s complement exponent field, and a 56 bit, two’s complement normalized mantissa field.
Methods for dealing with special conditions such as overflow and underflow are described.
Based on a study of different 2um CMOS 4-bit adders using SPICE, it is expected that the
floating-point units will run at 80MHz. The current design of the floating-point units has
a performance of 1.57MFlops, while a pipelined design would increase this performance to
4.70MFlops. The area estimate for the floating-point adder/subtractor is 3.2M \?, and for
the multiplier 5.6 M A2,

"The fixed-point RAP is a chip that was designed to do 16 bit fixed-point arithmetic
using a statically reconfigurable datapath. This chip demonstrates some of RAP ideas

using fixed-point arithmetic.




Chapter 5
Expression Compiler

The future enters into us, in order to transform
itself in us, long before it happens.

— RAINER MARIA RILKE, in Letters to a Young Poet

Bless thee, Bottom! bless thee! thou art translated.

— SHAKESPEARE in A Midsummer-Night’s Dream, III, i, 124

This Chapter describes a compiler that maps an arithmetic expression into a series of
switch configurations (a method) that are used by the RAP to calculate the expression.
The compiler serves several purposes: First, it generates methods for the benchmark ex-
pressions used in Chapter 6 to evaluate the performance of the RAP. The number of switch
configurations required to evaluate each expression determines the performance of the chip.
Second, the compiler allows the performance comparison of different resource configura-
tions: number of functional units available and switch connectivity. Third, the compiler
allows the investigation of different ways in which the compilation process itself can help

improve performance.

26
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Section 5.1 discusses the scheduling problem that the compilation process addresses.
Section 5.2 describes the search algorithm used, including pruning techniques. Finally,
possible enhancements to the compiler and other possible approaches to the problem are
discussed in section 5.3. The compiler is written in Common LISP and the code is found

in [11].

5.1 The Problem

The problem that must be solved is the following: given an expression that contains a num-
ber of add, subtract, and multiply operations, find how these operations can be scheduled
on the functional units in the RAP datapath. Scheduling must take into account the lim-
ited number of functional units and the limited connectivity between the functional units
and the inputs. The problem reduces to a graph matching problem in which the Directed
Acyclic Graph (DAG) [1], representing the expression, is mapped onto the resource graph.
that represents the functional units and their connectivity. In defining the resource graph
it is useful to first define a “level” a level is a snapshot of the datapath state (i.e. which
operations are being computed in which functior il units) for a given word time. Each
level has inputs coming from the “previous level” and has outputs that are feeding into the
“next level”. The resource graph is a multiple level graph used to represent the use of the
functional un:ts over time. The inputs of a each level are the inputs of the functional units,
the outputs of each level are the outputs of the functional units, and the inputs of each level

are connected to the outputs of the previous level as described by the switch connectivity.

An optimal-schedule is one that requires the smallest amount of time to complete the
calculation. Optimal scheduling with finite resources is a well known NP-complete problem
(13]. However, simple heuristic scheduling methods such as list scheduling have been found
to generate near optimal solutions [10]. The basic idea in list scheduling is to assign priorities

to the nodes in the DAG, based for example on their maximum distance from a DAG output.
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Scheduling then proceeds by scheduling as many operations as possible starting with the
highest priority operations, until resource constraints prevent further scheduling. All nodes

are scheduled in the same way until all tasks have been completed.

The scheduling problem is harder in the case of the RAP because of the limited connec-
tivity of the switch. A choice of schedule at one level may make it impossible to complete
the calculation of the expression. The limited connectivity eliminates the use of equivalence
classes [1] as a means of simplifying the scheduling task since any two units that have equiv-
alent functionality (there are four adders/subtractors for instance) do not have equivalent
connectivity. Often, at a given level, two values that must be added or multiplied are not
both connected to a common adder or multiplier. This means that the computation must be
delayed and the operands must be fed through feedthroughs. Furthermore, the feedthroughs
used should be chosen so that on the next cycle it will be possible to schedule the operation.
Now if a different set of schedules had been chosen for the previous levels, it is possible that
the extra feedthrough operations would not have been required. This example illustrates
that it is important not only to determine which operations should be scheduled at a given
level, but also which specific units should be used. Fortunately, the limited connectivity

does provide an inherent limitation on the search tree, since many schedules are impossible.

5.2 The Algorithm

The expression compiler does a tree search for possible mappings of an expression onto the
switch. First the expression is transformed into a DAG in which all common subexpressions
have been combined. Then, a depth first search is used that assignes operations to AUs and
intermediate results to feedthroughs until all the final results are available at the outputs
of functional units. This assignment of operations to AUs and intermediate resulis to
feedthroughs at a given level is referred to as a schedule for that level. If at any point the

search gets stuck and can no longer advance (for instance if there are more intermediate

—
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results that have to be fed through than there are feedthrough units) the search backs
up to the previous level and tries a new schedule. This continues until a method which
solves the problem is found. If the method found is not optimal, then the search continues
to try and improve on the method already found. A complete search is very expensive
because the problem is exponential and various techniques are used to limit the search as
is discussed in Section 5.2.3. Since the search is limited by heuristics. an optimal solution

is not guaranteed.

5.2.1 An Example

It is useful to look at an example. Suppose the compiler must schedule the three ex- |
pressions (*(+ 3 X) (+ Y X)), (* (+ ZY) (+ Z H)), (*(+ H 2) 4). The compiler first
transforms this h’si of expressions into a DAG as shown in Figure 5.1. Each node is given
a number, and has pointers to its inputs and to its destination nodes. The compiler then
begins scheduling the operations in time and space: it determinés for each word time which

operations are to be scheduled on which functional units.

Figures 5.2 and 5.3 represent output from the compiler. For each word time the level
information is illustrated, which consists of two parts: the schedules of operations that begin
in that word time, and an array showing the current position of all active operations in the
functional units. The three schedules for each word time are the add/subtract schedule, the
multiplier schedule, and the feedthrough schedule. Each entry in the schedule is a pair of
numbers consisting of the node number that is being schedulea (taken from the DAG), and
the number of the functional unit of that type it is being scheduled on. The functional units
of a given type are assigned numbers 0 through (n — 1) where n is the number of functional
units of that type. If an operation has both of its operands ready but cannot be scheduled.
it is assigned to the number n. For instance, in word time 1, nodes 12, 9, 7. and 4 are
scheduled on add/subtract units 0 through 3. Operation 2 is assigned to add/subtract unit

4 which indicates that it has not been scheduied due to the insufficient number of adders.
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Figure 5.1: DAG for the List of Expressions (*(+ 3 X) (+ Y X)), (* (+ 2Y) (+ Z H)).

(*(+ H2)4)
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Vord Time 1:

Adder/Subtzractor schedule: (12 0) (9 1) (7 2) (4 3) (2 4)
Multiplier schedule:
Feedthrough schedule: (13 0) (1 3) (0 1)

0 12 NFIL XIL
1 13
2 ¥IL NIL XNIL
3 0
4 9 ¥IL EIL
5 ¥IL
8 NIL ¥IL XIL
7
8 7 ¥IIL IIL
9 NIL
10 FIL NIL NIL
11 NIL
12 4 NIL NIL
13 NIL
14 NIL NIL NIL
16 NIL

Word Time 2: Word Time 3:

Adder/Subtractor schedule: (2 0) Adder/Subtractor scheduls:

Multiplier schedule: Multiplier schedule:
Feedthrough schedule: (13 0) Feedthrough schedule: (13 0)

0 2 12 1NIL o NIL 2 12

1 13 1 13

2 NIL FIL NIL 2 EIL NIL NIL

3 FIL 3 KIL

4 ¥IL 9 NIL 4 NIL NIL 9

6 NIL 5§ FIL

6 NIL NIL NIL 6 ¥IL NIL NIL

7 NIL 7 KIL

8 NIL 7 NIL 8 WIL NFIL 7

9 NIL 9 NIL

10 NIL NIL -NIL 10 NIL NIL NIL

11 NIL 11 ¥IL

12 ¥IL 4 ¥NIL 12 NIL ¥IL 4

13 NIL 13 XIL

14 NIL ¥IL NIL 14 ¥IL NIL NIL

15 FIL 15 FIL

Figure 5.2: DAG Schedule ‘part 1}
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Word Time 4: Vord Time §:
Adder/Subtractor schedule: Adder/Subtractor schedule:
Multiplier schedule: (14 0) (10 1) Multiplier schedule: (5 0)
Feedthrough schedule: (4 3) Feadthrough schedule:
O NIL NIL 2 0 NIL NIL NIL
1 EIL 1 NIL
2 14 XIL NIL 2 &5 14 NIL
3 JIL 3 1IL
4 NFIL NIL ¥NIL 4 YIL NIL EXIL
5 NIL 5 FIL
6 10 NIL ENIL é WIL 10 NIL
7 4 T IIL
8 3IL ¥IL NIL 8 NIL NIL NIL
? XIIL 9 JIL
10 BIL NIL NIL 10 JIL BIL NIL
11 ¥IL 11 NIL
12 ¥IL EIL NIL 12 KIL EIL NIL
13 NIL 13 NIL
14 NIL BIL ¥IL i4 NIL EIL NIL
16 NIL 16 NIL
Voxd Time 6: Vord Time 7:
Adder/Subtractor schedule: Adder/Subtractor schedule:
Nultiplier schedule: . Multiplier schedule:
Feedthrough schedule: Feedthrough schedule: (10 1) (14 0)
0 ¥IL NIL NIL 0 NIL NIL NIL
1 NIL 1 14
2 ML 5 14 2 NIL NIL B8
3 IIL 3 10
4 NIL NIL NIL 4 NIL NIL NIL
5 IIL 8 NIL
6 §IL NIL 10 6 NIL NIL NIL
7 BIL 7 IIL
8 FIL NIL NIL 8 "IL NIL ¥NIL
9 JIL - . 9 NIL
10 NIL NIL NIL 10 NIL NIL NIL
11 FIL 11 ¥IL
12 ¥IL NIL EIL 12 NIL NIL NIL
13 NIL 13 NIL
14 ¥NIL NIL NIL 14 NIL NIL NIL
15 ¥IL 15 KIL
Figure 3.2: DAG Schedule (part 2) -
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The second part of the diagram. represents the progress of the operations through the
functional units. Each of the sixteen entries in the table represents a functional unit (AU
or feedthrough) and its state. The state of a functional unit is described by which nodes
in the DAG it it working on. In the case of an adder/subtractor or a multiplier, three
operations can be in progress at once, because of the three word time latency of the units. A
feedthrough only has a latency of one word time. In the diagrams, operations are designated
by their DAG number, and a NIL entry indicates that no operation is in progress. Each
of the functional units of a given type has a position in the overall bank of functional
units. For instance, the adders/subtractors 0 through 3 are in positions 0,4,8, and 12 in
the bank of functional units. In the first word time of the method, nodes 12, 9, 7 and 4
are in the first word delay of the four add/subtract units. Input operands 0, 1 and 13 are
fed through feedthrough units. In the second word time of the method, nodes 12, 9, 7, |
and 4 have “advanced” one word time, node 2 is scheduled in an add/subtract unit, and
node 13 is again fed through. At the end of word time 3, results begin to come out of
the adders/subtractors which allows the scheduling of multiply operations in word time 4.
Calculation continues until all results are available at outputs of functional units in word

time 7.

The switch configuration for each level is determined by the schedules for each word time.
The compiler also outputs the schedule as a method that can be used by the RAP simulator.
Information is included as to which input registers are to be loaded with operands, and which

output registers will contain the results.

5.2.2 Sequencing Schedules

A way must be found to sequence through schedules at a given level. When first schedul-
ing a level, the compiler determines all the possible adds, subtracts, and multiplies that
can be done based on the outputs available from the previous level. When scheduling or

rescheduling a level, the add/subtract operations are assigned o add/subtrac: anits this
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ADD/SUBTRACT
SCHEDULES

MULTIPLY
SCHEDULES

FEEDTHROUGH
SCHEDWULES

Figure 5.4: Tree of All Possible Schedules for a Level

is called the add/subtract schedule), and the multiplies are assigned to multiply units (the .
multiply sdiednle). Once the operations have been scheduled the intermediate results that

will be needed in la.tgr levels can be determined, and scheduled on the feedthrough units

(the feedthrough schedule). Note that the intermediate results that have to be fed through

are dependent on which add/subtracts and which multiplies were scheduled.

In order to sequence through all possible schedules, all combinations of the different
add/subtract schedules, multiply schedules, and feedthrough schedules must be tried. Con-
ceptually, this is shown in Figure 5.4. This Figure is the tree of all the possible schedules at
a specific level. Each add/subtract schedule is tried with each multiply schedule, which in
turn is tried with each feedthrough schedule. This tree is traversed in a depth first fashion.

Note that the size of this tree is is limited by several factors. Sometimes switch con-
nectivity prevents two inputs from getting to the same functional unit. Often a functional

unit is unavailable because another operation has already been scheduled on it. A schedule

.
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is also illegal if it causes there to be more intermediate results than there are feedthrough
units. At the very first level, a schedule is valid only if a valid input operand to input
register assignment is possible (i.e. the inputs can be assigned to registers in such a way
that the operation and feedthrough schedules are possible). These factors all contribute to

reducing the size of the tree of possible schedules.

A method is needed to sequence the individual add/subtract, multiply, and feedthrough
schedules. Taking the example of an add/subtract schedule, the sequencing is accomplished
by ordering the add/subtract units, and then for each operation in the add/subtract schedule
assigning the units in order, so that all possible combinations of assignments of units to

operations are covered. Similarly for the multiply and feedthrough schedules.

- 5.2.3 Limiting the Search

In order for the algorithm to have acceptable runtime behavior, different ways must be found
to limit the search tree. The combinatorial explosion at the first level alone is enough to
render the complete search infeasible. The first level is particularly bad because the complete
flexibility allowed in assigning the input registers means that most of the schedules tried are
possible and should be investigated. As an example, if at the first level the add/subtract
schedule has 8 operations, the multiply schedule has 8 operations, and all 8 feedthrough
units will be needed, then the number of schedules at the first level is over 1.74 x 10!1. The
problem is not nearly as bad at other levels since their inputs are fixed by the outputs from

the previous level and the switch connectivity limits the schedules that are possible.

The following algorithmic methods are used to prune branches of the search tree:

1. A branch-and-bound search is used [33, 37). Once a solution has been found, a lower
bound of the required remaining levels is used to prune all branches that cannot lead

to a better solution than the one already found e.g. il it is known that continuing
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the search along a given branch will at best require six more levels to complete the
calculation, and the method that has already been found requires six or less more
levels, then there is no point in continuing the search along that branch. The lower
bound used is the maximum depth of an unscheduled node from an output of the

DAG, times the number of level delays required to complete a single computation.

2. Branches in which no activity is occurring are eliminated. If the search gets into a
state in which it continuously feeds through intermediate results without doing useful

work, this is detected and corrected.

3. A lower bound of the best possible number of configurations the DAG can be mapped
into is calculated, and if this optimal number is achieved, the search is stopped.

The following heuristic methods were used to guide the search and prune branches from

ihe search tree:

1. Operations are prioritized. Each operation is assigned a priority based on its maximum
distance from any output of the DAG. This priority is used to help decide which
operations to schedule first.

2. Greedy scheduling of operations is used. If there is a functional unit which an oper-
ation can be scheduled on (because no other operation has been scheduled on it and
because the input operands are connected via the switch) then it will be scheduled.
If greedy scheduling is not done many branches are searched in which although an
operation can be scheduled, it is not scheduled, but rather the operands are sent to
feedthrough units. There are pathological cases where this is in fact desirable but
they are rare in typical mathematical expressions. Greedy scheduling at the first level
is optional because there are cases where requiring greedy scheduling at the first level

makes the input register assignment impossible.

3. When scheduling the first level, the number of feedthrough schedules attempted for a

—




————

CHAPTER 5. EXPRESSION COMPILER 97

specific add/subtract and multiply schedule is artificially limited. As mentioned pre-
viously, the great flexibility at the first level is a major contribution to the complexity
of the problem. Most of the time it is an incorrect assignment of the add/subtract
or multiply units at the first level that prevents a better method being found. Ex-
amining all possible ways of assigning the feedthrough units when the add/subtract
or mu!*iply assignments are non-optimal is unproductive. A non-optimal feedthrough

assignment at the first level is easier to correct for in subsequent levels.

4. The number of different valid schedules examined is artificially limited. A valid sched-
ule means any schedule at any level which is looked at because it may lead to a better
solution. The behavior of the algorithm is such that the depth first search usually
quickly finds a method that will do the computation, though this is not usually the-
optimal solution. It then spends time backtracking and trying to find a better solu-
tion. Limiting the number of valid schedules examined limits the time spent in trying
to improve the answer. This is similar to a time limited chess program that cuts its

search short and returns the best answer found so far.

Although not currently implemented in the compiler, there is a fallback position if a
method is not found for an expression. It involves breaking up the expression DAG into
smaller subDAGs and scheduling the subDAGs. This is similar to the register allocation
problem in which if there are not enough registers to hold all intermediate resuits. the

fallback position is to store values in memory.

5.3 Other Enhancements and other Approaches

A number of other enhancements to the compiler are possible but have not been imple-
mented. These enhancements improve performance in terms of running time and in terms

of the quality of the methods found:
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1. Expression Pre-Processing. Include a pre-processing step in which the expression
graph is rearganized to minimize its depth and its resource requirements. This reor-
ganization step would use the associative, commutative, and distributive properties to
do Arithmetic-Expression Tree-Height Reduction as suggested by Kuck {20, 19]. This
type of reorganization can lead to speedups of at most O(n/logn). Two examples of

the benefits of doing this reorganization are:

& Accumulation Trees. Many of the loops involve accumulating a result into a single
variable by adding one partial result to the total at each iteration. To exploit
the pacallelism available on the RAP these are broken up into accumulation
trees, as shown in Figure 5.5 in the case of a sum accumulate. In the case that
intarmediate results of an accumulate function are aeeded (e.g. each partial sum), -
adding redundant operations permits the use of an accumulate tree to speed up
the overall computation. This is shown in Figure 5.6.

e Eliminate Common Subexpressions. The compiler currently combines common
subexpressions which are exact duplicates of each other. It is possible to use
the distributivity and associativity of operations to find other ways to simplify
the expression. For instance, Figure 5.7a is simplified by the compiler to Figure
5.7b but could be simplified to Figure 5.7c using the distributivity property of
the multiply operation. This must be used with caution since eliminating all
common subexpressions may not be advisable if the goal is to minimize graph

depth.

2. Redundant Operations. The compiler can use unused functional units to do redundant
computations which would improve the schedulability of the following levels. For
instance, if a value is fed through two different feedthrough units it will be accessible
to more functional units as an input at the next level. The same is true if an add or

a multiply is done twice.
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. Figure 5.5: An Accumaulation Tree
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Figure 5.6: Accumulation Tree with Redundant Operations
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. EXPR2

EXPR3 EXPR3

c)
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Figure 5.7: a) Unsimplified DAG b) DAG with Common Subexpressions Combined ¢) DAG
Simplified Using the Distributivity Property
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3. Redundant Input Variables. In some cases loading an input operand into more than
one input register can allow operations to be scheduled that could not otherwise be
scheduled. This increases the bandwidth requirements of the computation but can

also increase floating-point performance.

4. If the switch/functional unit combination exhibits some form of symmetry, then this
can be exploited at the first level to prevent the examining of schedules that are
equivalent. This symmetry cannot be exploited at other levels because the symmetry

is broken by the fact that inputs to the level are fixed by the previous level.

Completely different approaches are possible than the search algorithm used. Possibili-

ties include:

1. Do the search backwards starting from a scheduling of the outputs.

2. Introduce critical path analysis and begin by scheduling the critical path, attempting
to fit in the other computations around the already scheduled operations.

3. Rather than searching for the methods, attempt to match expressions to common

expréssion patterns for which mappings onto the switch are known.

Further study is needed to determine the feasibility and the performance benefits. if

any, of these approaches.

5.4 Summary

In order to use the RAP datapath, a compiler has been written that maps a mathemarical
expression into a series of switch configurations that perform the calculation. The compiler

schedules operations on the finite resources of the RAP. The compiler allows the specification

—
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of the RAP resources including the number and type of functional units, and the switch

connectivity.

Finding an optimal schedule for the operations is an NP.complete problem. For this
reason, the approach used in the compiler is to do a depth first search using algorithmic
and beuristic methods to guide and limit the search. The most important of these are the
prioritizing of operations based on their maximum depth from a DAG output, the greedy
scheduling of operations, the use of a calculated lower bound to limit the search, and the

artificial limiting of the number of schedules examined.




Chapter 6

Performance

Be not swept off your feet by the vividness of the impression,
but say, “Impression, wait for me a little. Let me see what
you are and what you represent. Let me try you.”

— EPICTETUS, in Discourses, bk. II, ch. 18

We should be careful to get out of an ezperience only
the wisdom that is in it - and stop there; lest we be like
the cat that sits on the hot stove lid. She will never sit
doun on a hot stove lid again - and that is well; but
also she will never sit down on a cold one any more.

— MARK TWAIN in Following the Equator, vol. I,
Pudd’nhead Wilson’s New Calendar, ch 11 (1897)

In this Chapter, performance of the RAP is evaluated using the simulator of Chapter
3 and the expression compiler of Chapter 5. Performance is evaluated by taking a number
of mathemaiical expressions from the inner loops of computationally intensive programs.
mapping them onto the RAP using the expression compiler, and simulating the operation

of the RAP using the simulator. Performance is evaluated from two points of view: first of

—
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all from the point of view of the bandwidth reduction achieved over the case in which no
locality is exploited, and secondly from the point of view of the rate of computation achieved
in Millions of Floating-Point Operations per second (MFlops). For the problems evaluated
the bandwidth that has to be provided to the datapath to achieve a given performance is
reduced on average by 64%. The average floating-point performance for these problems is

3.40MFlops.

This Chapter is organized as follows: in section 6.1 the assumptions made and the
benchmarks used in the performance evaluation are described. Sections 6.2 and 6.3 deal
with the bandwidth performance of the RAP and floating-point performance of the RAP
respectively. Section 6.4 discusses what factors limit the performance achieved, and finally

section 6.5 looks at various ways in which the RAP performance can be improved.

6.1 Evaluation Method

6.1.1 Assumptions

Performance figures assume a minor cycle of 12.5ns, a major cycle of 50ns, an input band-
width of 400Mbit/sec, and an output bandwidth of 400Mbit /sec [9]. A word time is extended
to five major cycles from four major cycles because one extra cycle is needed every word time
to change the switch configuration. The latency of a single floating-point adder/subtractor
or multiplier is three word times or 15 major cycles, and the units are assumed to be
pipelined, such that peak performance is 4MFlops for each unit. The feedthrough units
have a latency of one word tiine. The overhead in handling messages is determined by the

implementation of the RAP control and is simulated by the simulator.
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6.1.2 Benchmarks

The expressions used as benchmarks are derived from a number of numerically intensive
problems involving many adds, subtracts, and multiplies. They were taken from a number
of common problems such as circuit simulation, signal processing, hydrodynamics, and
common vector and matrix computations. The programs used in the set of Livermore Loop
benchmarks [27] are drawn upon extensively. Typically the expressions are found in the
innermost loop of these programs and must be executed many times each time the program

is run.

A number of techniques are used to help map the expressions onto the switch and to

increase performance:

1. Loop Unrolling. If the innermost loop is simple, then a number of loop iterations are

mapped onto the RAP at the same time.

2. Loop Decomposition. If the expression in the innermost loop is too large, then the
expression or expressions must be broken up into several different messages to be sent

to the RAP.

3. Expression Pre-processing. Some of the benchmark DAGs are “pre-processed” using
the techniques suggested for improving the compiler in Chapter 5. The techniques
used included the use of accumulation trees (including redundant operations), and

redundant input variables.

The benchmarks used along with the details of how they were mapped onto the RAP

are shown in table 6.1. The benchmark expressions are found in [11].
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Benchmark | Comments

bm-vectsum | Vector sum of two vectors of dimension 8.
bm-accum Accumulate of 16 numbers in a sum.
bm-accum2 | Accumulate of 16 numbers in a sum and

in a multiply at the same time.
bm-2x2fft A 2x2 FFT.
bm-22x2fft | Two 2x2 FFTs computed at the same time.
bm-4x4fft A 4x4 FFT. Two extra operations introduced to

allow adder units to act as feedthroughs.
bm-vandp An iterative solution to Van Der Pol’s equation.
bm-poly6 Calculation of a polynomial of degree 6.
bm-ids formula for the non-saturation drain

to source current in a MOS transistor.
bm-livl Hydro excerpt, loop unrolled 3 times.
bm-liv2 Incomplete Cholesky Conjugate Gradient,

loop unrolled 3 times.
bm-liv3 Inner Product, accumulate tree used.

Note: Livermore loop 6 has the same form.
bm-liv4 Banded Linear Equations, loop unrolled § times.
bm-liv$ Tri-Diagonal Elimination, loop unrolled 4 times.
bm-liv? Equation of State Fragment.
bm-liv8 A.D.I Integration, one expression from main loop.
bm-liv10 Difference Predictors, Accumulate tree

and 6 redundant operations used.
bm-livll First Sum, loop unrolled 10 times, Accumulate tree

and 7 redundant operations used.
bm-livi2 First Difference.
bm-livl8 2-D Explicit Hydrodynamics Fragment,

one expression from main loop.
bm-livl9 General Linear Recurrence Equation,

loop unrolled 3 times.
bm-liv21 Matrix*Matrix Product, loop unrolled 15 times,

Accumulation tree used.
bm-liv23 2-D Implicit Hydrodynamics Fragment

Table 6.1: Benchmarks used to Evaluate Performance
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6.2 Bandwidth Performance

The main goal of the RAP is to use the locality found in mathematical expressions to
reduce the bandwidth required to sustain high rates of floating-point computation. For the
benchmarks studied the bandwidth required to sustain a given level of computation was

reduced on average by 64% from the bandwidth required if no locality is exploited.

Table 6.2 summarizes the bandwidth requirements of the different benchmarks. For
each problem the table shows the number of operations performed, the number of input
and output words, and the number of configurations in the method. From these figures
the I/O bandwidth required is calculated and compared to the maximum bandwidth that
this calculation requires if no locality is exploited, to determine the reduction in bandwidth -

achieved by using the RAP.

The I/O bandwidth required depends on the locality inherent in the problem. For
instance the vector sum benchmark, bm-vectsum, consists of a number of independent op-
erations and has no locality that can be exploited by the RAP so there is no bandwidth
advantage in using it (in fact if overhead is included, using the RAP is more costly). The
situation is similar in the case of the dm-liv{ and dm-livi2 bénc'ixmarks, Except for the
above mentioned three cases the bandwidth required for all the problems has been reduced
to within the capacity of the network.

The bandwidth requirements also depend on how good a mapping the expression com-
piler found for the benchmark. The longer the method, the less bandwidth is required to
sustain the computation and vice versa. However, the percentage savings of bandwidth is

independent-of'the length of the method used.

Note that the I/O bandwidth required will increase slightly because of communication
and message overhead. The percentage cost of this overhead depends on how many sets of

operands are sent in a single message.
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# | I/O Words # I/0 Maximum %

Benchmark | Ops | (input + | Configs. | Bandwidth | Bandwidth Bandwidth

output) Required Required Savings

bm-vectsum | 8 16 + 8 4 1536Mbit/s | 1536 Mbit/s 0%
bm-accum | 15 16 +1 14 311Mbit/s | 823Mbit/s 62%
bm-accum?2 | 30 16 + 2 16 288Mbit/s | 1440Mbit/s 80%
bm-2x2fFt 10 6+ 4 12 213Mbit/s | 640Mbit/s 67%
bm-22x2fft | 20 12+ 8 17 301Mbit/s | 904Mbit/s 67%
bm-4x4fft 36 15 + 8 18 327Mbit/s | 1536Mbit/s 79%
bm-vandp | 20 8+ 4 26 118Mbit/s | 591Mbit/s 80%
bm-poly6 16 8+1 23 100Mbit/s | 534Mbit/s 81%
bm-ids 9 841 14 165Mbit/s | 494Mbit/s 67%
bm-livl 15 10+ 3 16 208Mbit/s | 720Mbit/s 1%
bm-liv2 12 13+ 3 10 410Mbit/s | 922Mbit/s 56%
bmliva | 15 | 16+ 1 14 311Mbit/s | 823Mbit/s 62%
bm-liv4 10 15+4+5 8 640Mbit/s | 960Mbit/s 33%
bm-livs 8 9+4 25 133Mbit/s | 246Mbit/s 46%
bm-liv7 16 12 +1 24 139Mbit/s | 512Mbit/s 73%
bm-liv8 12 12+1 19 175Mbit/s | 485Mbit/s 64%
bm-liv10 15 10 + 10 15 341Mbit/s | 768Mbit/s 56%
bm-livll 17 12 + 10 15 375Mbit/s | 870Mbit/s 57%
bm-livl2 11 12411 5 1178Mbit/s | 1690Mbit/s 30%
bm-livl8 13 12 +1 23 145Mbit/s | 434Mbit/s 67%
bm-livl9 9 746 30 111Mbit/s | 230Mbit/s 52%
bm-liv21 15 16 + 1 18 242Mbit/s | 640Mbit/s 62%
bm-liv23 11 11 + 2 22 151Mbit/s | 384Mbit/s 61%
Average 15 12 + 4 17 244Mbit/s | 682Mbit/s 64%

Table 6.2: RAP Bandwidth Performance
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6.3 Floating-Point Performance

The floating-point rate attained on the benchmarks is the second key element of the RAP
performance. Assuming pipelined Joating-point units, with a latency of 15 major cycles,
each adder/subtractor and multiplier can sustain a computation rate of 4 MFlops, giving
a peak performance rate of 32 MFlops for the entire chip. For the benchmarks the average
performance was 3.40MFlops and ranged from between 1.20MFlops to 8.80MFlops. On
average 11% of peak power was used. The reasons for this low utilization of resources are

discussed in section 6.4.

Table 6.3 summarizes the performance results for the different benchmarks. For each

problem the table shows the number of operations performed, the number of switch config- .

urations in the method, and the resulting MFlops performance. Note that for benchmarks
bm-4z4[ft, bm-liv10, and dbm-livl1 in which redundant operations have been introduced, the
redundant operations are counted in the number of operations column, but are not counted
when calculating the performance. The latency column refers to the time from when one
problem instance is in the input buffer to when the complete result is in the output buffer
and includes all control overhead. Table 6.4 shows the maximum achievable performance
that is possible given infinite resources (i.e. unlimited switch connectivity and as many
units of a specific type as are required), and the performance achievable if the same num-
ber of functional units is maintained but the switch is a complete switch. These figures
are compared to the performance actually achieved: on average the limited switch used
achieved 82% of the best possible performance and 88% of .the performance achieved with

a complete switch.
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# #

Benchmark | Ops. | Configs. | MFlops | Latency
bm-vectsum 3 4 8.00 2.90us
bm-accum 15 14 4.29 5.05us
bm-accum2 | 30 16 7.50 5.60us
bm-2x2ft | 10 12 3.33 | 4.20us
bm-22x2fft | 20 17 4.71 | 5.95us
bm-4x4fft 36 18 7.56 6.35us
bm-vandp 20 26 3.10 7.80us
bm-poly6 16 23 2.78 6.90us
bm-ids 9 12 3.00 4.50us
bm-livl 15 16 3.75 5.35us
bm-liv2 12 10 4.80 4.00us
bm-liv3 15 14 4.29 5.05us
bm-liv4 10 8 5.00 3.70us
bm-livs 8 25 1.28 7.60us
bm-liv7 16 24 2.67 7.35us
bm-liv8 12 19 2.53 6.10us
bm-livl0 15 15 2.40 5.45us
bm-livll 17 15 2.67 5.55us
bm-livi2 11 5 8.80 3.10us
bm-livl8 13 23 2.26 7.10us
bm-livi9 9 30 1.20 8.85us
bm-liv21 15 18 3.33 6.05us
bm-liv23 11 22 2.00 6.85us
Average 15 17 3.40 5.71us

Table 6.3: RAP Floating-Point Performance
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Infinite | Complete
Benchmark | Resources | Switch Actual Switch
MFlops MFlops | MFlops | % of optimal | % of complete
switch
bm-vectsum 10.67 8.00 8.00 75% 100%
bm-accum 5.00 4.62 4.29 86% 93%
bm-accum?2 10.00 9.23 7.30 75% 81%
hm-2x2fft 4.44 4.44 3.33 75% 5%
bm-22x2fft 8.89 8.00 4.71 53% 59%
bm-4x4fft 15.11 9.07 7.56 50% 83%
bm-vandp 3.33 3.33 3.10 93% 93%
bm-poly6 3.56 3.56 2.78 8% 78%
bm-ids 3.0 3.00 3.00 100% 100%
bm-livl -5.00 4.62 3.75 75% 81%
bm-liv2 5.33 4.80 4.80 90% 100%
bm-liv3 5.00 4.62 4.29 86% 93%
bm-liv4 6.67 5.71 5.00 75% 88%
bm-livd 1.33 1.33 1.28 96% 96%
bm-liv7 2.67 2.67 2.67 100% 100%
bm-liv8 3.20 3.20 2.53 79% 79%
bm-liv10 3.00 2.78 2.40 80% 87%
bm-livil 3.33 3.08 2.67 80% 87%
bm-livli2 14.66 8.80 8.80 60% 100%
bm-liv18 2.88 2.88 2.26 8% 8%
bm-livl9 1.33 1.33 1.20 90% 90%
bm-liv21 4.00 3.75 3.33 83% 89%
bm-liv23 2.10 2.00 2.00 95% 100%
Average 4.13 3.88 3.40 82% 88%

Table 6.4: Comparison of Actual Performance to Ideal Performance
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6.4 Limits on Performance

6.4.1 Limits on Bandwidth Performance

The amount by which the RAP is able to reduce bandwidth requirements is limited by two
factors: the structure of the computation to be performed, and the current control scheme
which does not allow exploitation of locality outside of the calculation of an individual

expression,

The structure of the computation determines how much locality is present in the expres-
sion to be exploited by the RAP. If the computation calculates many intermediate results
that get combined to give the final results, then the RAP will be very effective in reduc- -
ing the overall bandwidth requirements. If on the other hand the expression is a series of

independent adds, subtracts, and muitiplies, the RAP will not be as effective.

In the RAP, locality is exploited within an expression but not between expressions. All
calculations are modular in that the input operands are sent to the RAP, the calculation is
performed, and the results are sent to a predetermine«i destination. No provision is made for
different calculations to share their input variables or their output results. For instance, an
expression might use the same constants all the time, but the RAP requires that each time
the expression is calculated the constants be sent as input variables. As another example,
consider the case of accumulating 256 numbers in a sum. This is done as follows: the RAP
first does 16 accumulates of 16 numbers, these 16 intermediate results are gathered together
at an MDP, which then sends another message to the RAP to do the final accumulate. If
the RAP had mechanisms for storing its outputs results and using them as inputs later,
then the bandwidth costs of sending the intermediate results to the MDP and receiving
them back would be eliminated.
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6.4.2 Limits on Floating-Point Performance

The limitations on the floating-point performance achievable by the RAP are due to the
structure of the computation to be performed, the latency of the AUs, and to the resource

limitations of the RAP.

First of all, the computation is limited by the data dependencies of the problem: op-
erations which take inputs from other operations cannot be started until the results from
these other operations are available. Even with infinite resources the maximum depth of
the expression DAG that represents the computation determines the minimum number of
configurations that will be required to complete the computation. Furthermore, most com-
mon computations have a binary treelike structure, which have lots of operations to do. _
at the beginning (at the leaves of the tree), bul have many less operations to do as the
computation progresses towards the final result (the root of the tree). This means that
typically the AUs will be used heavily at the beginning of a computation but will be mostly
idle towards the end of the computation (note that there are exceptions to this generaliza-
tion: The FFT expressions have as many operations at the last level of their DAG as at
the intermediate levels). These data dependency limitations prevent the RAP from being
used at even close to peak performance: the best performance that can be achieved for the

different benchmarks is given in the last column of Table 6.3.

The three word latency of the AUs compounds the data dependency problem: the
computation can never complete faster than the maximum depth of the DAG times the

latency of the AUs. Reducing the AU latency will lead to increased performance.

Resource constraints also limit performance. RAP resources include the number and
distribution of each type of functional unit, and the switch interconnectivity. Often, the
computation would proceed faster if there were only more adders or multipliers available.
or if the switch had extra connections allowing inputs to reach the same functional unit,

or if extra input registers or feedthrough units were available. Comparing the MFlops

—
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actually achieved to maximum péssible achievable in Table 6.4 provides a figure of merit
for the RAP resources and the expression compiler. For the benchmarks used the RAP
achieved 82% of the maximum possible performance for that problem. and 88% of the
performance achievable if the switch is complete. As is discussed in section 6.5, changing
the resource configuration may lead to better performance. For the problems considered.
allowing unlimited switch resources (i.e. having a complete switch) means that the RAP
would achieve 91% of the maximum achievable performance. This means that if the compiler
is assumed to generate the best method for the given resources (this is a good approximation
for the switch considered) then 53% of the performance degradation from the ideal case can
be attributed to the limited switch connectivity, and the remaining 47% to the limited
number of functional units. This suggests that the limited switch and the limited number
of functional units are about equally responsible for the performance degradation from the

ideal case.

6.5 Improving Performance

6.5.1 Finding Better Methods

Throughout the discussion on mapping expressions to switch configurations in Chapter 35,
a number of ways of to improve the methods found were suggested, and it is important to

see how these relate to the factors that limit the performance as discussed in section 6.4.

Two mechanisms can be used to increase resource utilization and limit the effect of data

dependencies:

1. Map more than one expression onto the switch at once so that utilization of the
functional units increases. In a aumber of the benchmarks studied, this was done

by unroiling loops /see Tabie 5.3) but it can also be done my mapping completeiv
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independent expressions onto the switch. The extent to which this mechanism can be

used is limited by the number of input registers and functional units available.

to
.

The DAG that represents the computation can be rearranged to minimize its depth.

as discussed in Chapter 3.
Mechanisms also exist which can reduce the effects of resource constraints:

1. Idle functional units can be used to do redundant operations and feedthroughs which
will improve the schedulability of the following levels. If a result of a given node is
available in more than one place, the incomplete connectivity of the switch can be

masked more effectively.

2. Input operands can be loaded into more than one input register if some of the input
registers are unused. The effect is the same as doing redundant operations on un-
used functional units. Note that under the current control scheme this means input

bandwidth requirements will also increase.

6.5.2 Using Different Resource Configurations

There are two dimensions of the RAP datapath that have an effect on the RAP performance:

the number of each type of functional unit, and the switch connectivity.

The optimal number of each type of functional units depends on the problem. Currently.
there are four add/subtract units and four multiply units. However, many problems have
more adds than multiplies so that having more add/subtract units than multiply units may
be advantageous. This is highly problem dependent, and a more careful study is needed
to determine whether an asymmetry in the number of functional units is desirable. This

choice is also limited by practical considerations, such as how much silicon area each type
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of functional unit requires (e.g. it is easier io add another feedthrough unit than it is to

add an add/subtract unit or a multiply unit).

The switch connectivity is a variable which has an effect on performance. For instance.
the methods found by the compiler for the benchmarks could in many cases be optimal if
only the switch connectivity had been different. The advantage of the current switch is that
it is symmetric and offers equal loading on all the input lines. The choice of this switch
however was somewhat arbitrary, and the question that must be answered is whether there
are certain characteristics that are desirable in the switch. In trying to map expressions

onto the switch, two desirable properties of the switch have become evident:

1. Embedded Trees. Since the expressir ns computed on the RAP typically have the
shape of binary trees, being able to map trees onto the switch is a desirable property.
A simple example of this is the case of the accumulate benchmark dm-accum, that
takes 14 configurations rather than the optimal 13 configurations (13 is optimal in the
case that only four adders are present, whereas 12 is optimal if unlimited resources are
assumed). The extra configuration is required because at one point in the computation
values have to go through feedthroughs so that the two operands can both reach the
same adder. If the accumulation tree could be mapped directly onto the switch without

the extra feedthrough stage, then the performance would be improved.

2. Wide Fanout. It is desirable to have some inputs that are fanned out to many of
the functional units. In many :.3ses a result is needed in more than one place and
must be fanned out to multiple units. In tue case of the switch used for performance
evaluation, a given output can only reach two adders and two multipliers. If a third
add or multiply using that value is ready to begin, it will be delayed and the value

w1l have to go through a feedthrough until an adder it can reach is available.

In order to experiment with improving performance by changing the switch configura-

tion, the switch of Figure 5.1 was used with the compiler »f “hapter 5. This switch looks
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rather irregular but it has the following interesting properties: the inputs 0, 1, and 2 fanout
to all the AU units, and most trees can be directly mapped into a succession of switch config-
urations that do not include unnecessary feedthroughs. Unfortunately, this irregular switch
makes it so that the compiler has to search a lot longer to find a good solution, because
although the optimal solution is possible, there is usually only one optimal solution. This
argues in favor having a more con-lplete switch or a compiler that is more aware of switch
structure: the search could be directed towards matching common expression patterns for

which the optimal sequence of switch configurations is known.

6.5.3 Pipelining RAPs

RAPs can be used in a pipeline in which each RAP does part of the computation and passes
intermediate results to the next RAP for the next part of the computation. Pipelining
increases performance by allowing more than one RAP to work on the same problem. For
example, if one RAP does the first half of the configurations in a method and then passes
intermediate results onto the next RAP which executes the second half of the configurations
of the method, then overall performance can be increased by a factor of two. As in any
pipeline, balancing the stages of the pipeline is important: each RAP in the pipeline should
have the same amount of work to do i.e. the same number of configurations. Also, the
network is an important part of the pipeline since between every two RAP stages there is a
network stage. Matching the network speed to the RAP speed is an important consideration.
To achieve balance, each method should have sufficient configurations to keep the RAP busy
without overloading the network, and few enough for the RAP to keep up with the network.
Table 6.5 shows how many configurations in a method would be ideal, given the number
of input operands. The minimum number of configurations that does useful work is three,
the latency of one operation. Note these figures assume an unloaded network: if there is
other traffic on the network the I/O bandwidth will decrease, the time for a complete set of

operands to arrive, and the ideal number of configurations per method will both increase.

——
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# Time for a set of | Best Number of
Operands | operands to arrive | Configurations

1 160ns 3

2 320ns 3

3 480ns 3

4 640ns 3

) 800ns 3

6 960ns 4

7 1.12us 4

8 1.28us )

9 1.44us 6

10 1.60us 6

11 1.76us 7

12 1.92us 8

13 2.08us 8

14 2.24us 9

15 2.40us 10

16 2.56us 10

120

Table 6.5: Optimum # of Configurations per Method vs. Number of Input Operands

For those computations which have long methods, dividing the computation into a
pipeline over several RAPs is advantageous. This requires finding the right place to break
up a method. Any mismatch in speed between the network and the RAP can be somewhat

" compensated for by the input and output buffers, but in the worst case may back up the

network.

6.5.4 Reorganizing Control and Operation of the Data Path

Reorganiziné how the RAP datapath is controlled can lead to both improved bandwidth
performance, and to improved floating-point performance. This is achieved however at the

cost of increased complexity in the control. The extra performance gained by these schemes

must be carefully measured against the extra cost in complexity.
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Decreasing Bandwidth Requirements

A very simple idea for reducing the bandwidth required for many expressions is to include
constants in the expression as part of the method definition. This means that the constants

do not have to be sent as input operands every time the method is calculated.

A more difficult idea to implement is to give the RAP a more general addressing capa-
bility that would allow it to store the input operands and the results of its computations
in memory, and to combine these stored values in subsequent computations. This offers
the possibility of further decreasing the off chip bandwidth but would require a substantial

increase in control complexity.

Increasing Floating-Point Performance

The control scheme of the RAP datapath is currently set up in a way that minimizes com-
plexity. Problems are loaded one at a time, and only one problem can be in the functional
units at a time. Allowing only one problem to be calculating at a time means that for
the common tree structure, lots of work is done at the beginning of the computation (at
the leaves of the tree) but as computation progresses utilization of the functional units

decreases, and the floating-point performance decreases.

Performance can be increased by using different control schemes that relax the constraint
of having only one problem calculating at once. If the feedthroughs are extended to have
three word delays, and the datapath is considered as three different machines that can
calculate thr_ee _diﬁ'erent problems, then performance can be increased by a factor of three
if there is sufficient bandwidth. In this scheme the overall performance increases, but the
speed of calculation of one particular expression decreases. Alternatively, the methods could
be compiled so that when doing calculations on many sets of operands, computation on one
set of operands begins before the calculation on the previous set completes. This similar to

software pipelining in VLIW machines [21] in which iterations of a loop in a program are
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initiated at constant intervals, before the preceding iterations complete. In the case of the
tree structure, this means that another tree begins to calculate just as the previous tree is

beginning to have less work to do, and thus resource utilization increases.

6.6 Summary

There are two aspects of the RAP performance that are important: the bandwidth required
to sustain a given level of computation, and the floating-point performance achieved. 23
benchmarks consisting in mathematical expressions taken from the inner loops of compu-

tationally intensive programs were used to evaluate performance.

The RAP reduces I/O bandwidth that must be provided to the datapath by 64% when
compared to the bandwidth required if no locality is exploited. The amount bandwidth
is reduced by is limited by two factors: the locality present in the benchmark, and the
fact that the RAP does not allow sharing of input variables or results between different

expressions.

The RAP achieves an average floating-point performance of 3.40MFlops over the 23
benchmarks. This performance corresponds 82% of the performance achievable if infinite
resources were available, and to 88% of the performance achievable if the number of units
is limited but a complete switch is used. The floating-point performance is limited by
the amount of parallelism present in the calculation, by the AU latencsr, and by resource

. constraints.

Numerous schemes can be envisioned for improving performance. Bandwidth perfor-
mance can be improved by allowing constants to be included as part of the RAP, and by
allowing the RAP to use on chip memory to exploit locality beyond the expression level.
Floating-point performance can be improved in several ways. Better methods can be found

by improving the compiler, and by improving the resource configuration to allow good map-

—
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pings to be found more easily. The RAP control structure could be changed to allow more

than one problem to be computing at one time. Also, floating-point performance can be

increased at the system level by pipelining RAPs.




Chapter 7

Conclusion

No thing great is created suddenly, any more than
a bunch of grapes or a fig. If you tell me that you
desire a fig, I answer you that there must be time.

Let it first blossom, then bear fruit, then ripen.

— EPICTETUS, in Discourses, bk. I, ch. 15

Perhaps someday it will be pleasant to remember even this.
— VIRGIL in Aeneid, bk. I, l. 208

Now is the time for drinking, now the time
to beat the earth with unfettered foot.

— HORACE in Odes, bk. I, ode zzzvii, . 1 (23 B.C.)
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7.1 Summary

The main problem in achieving high performance floating-point is supplying the I/0 band-
width, both on and off chip, necessary to keep fast floating-point circuits and datapaths
busy. This Thesis describes and evaluates the Reconfigurable Arithmetic Processor (RAP)
architecture, which is designed to substantially reduce the bandwidth required to do high

performance floating-point.

The RAP uses three main mechanisms to reduce bandwidth: use of locality, serial arith-
metic, and a reconfigurable datapath. First, it exploits the locality inherent in mathematical
formulas by calculating complete arithmetic expressions without storing intermediate results
in memory or in register banks. This elimiaates the bandwidth costs associated with stor-
ing and retrieving intermediate results. Second, it uses serial arithmetic which allows area
efficient implementations of floating-point arithmetic. This area efficiency allows several
floating-point units to be put on a single chip and these units can be run in parallel to
achieve high performance. Third, the RAP uses the idea of a reconfigurable datapath that
permits the routing of intermediate results between functional units using a switch. The
calculation oi a mathematical expression involves sequencing the switch through different
configurations, thus routing operands and intermediate results to appropriate functional

units.

The RAP is designed to fit into the J-Machine (8], a message passing multiprocessor
system. The RAP is controlled by three simple messages, which allow it to be used in this
system. These messages allow mathematical expression “programs” know as methods to
be st~red on .the RAP, and provide a convenient mechanism for invoking these methods
on different data inputs. A mechanism is also provided to permit the pipelining of RAPs,

forking operations, and merging operations.

Two important aspects of the RAP hardware design are investigated in this Thesis: the

design of the control logic and the design of the serial floating-point units. The controi
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is conveniently divided into input control, switch control, output control, and network
interface control. The simple flow charts for these logic blocks can easily be implemented

using random logic or small PLAs.

Two types of serial floating-point functional units are used in the RAP, one a floating-
point adder/subtractor, the other a floating-point multiplier. The implementation of these
units is based on doing 4-bit serial arithmetic. Doing 4-bit arithmetic allows more efficient
use of the logic than 1-bit or 2-bit serial arithmetic, and can be implemented with simple
extensions of 2-bit algorithms. In particular, the mantissa multiply portion of the floating-
point multiplier is based on Modified Booth encoding, a technique that has been used to
implement two-bit serial fixed point arithmetic [23]. The most critical circuit in these units is
the 4-bit adder used, due to the long carry delay. SPICE simulations of different 4-bit adders
indicate that it will be possible to run these units at 80MHz. The current arithmetic unit
designs have a performance of 1.57MFlops, and an improved design that allows problems to
be pipelined one immediately following the other would have a performance of 4.70MFlops.

An e;cpression compiler is used to map mathematical expressions onto the RAP data-
path. This compiler takes as input a list of mathematical expressions that contain several
adds, subtracts, and multiplies. It then outputs a series of switch configurations that will
route operands and intermediate results to functional units that will perform the compu-
tation. This compiler uses a depth first search, trying to assign operations to functional
units, while taking into account data dependencies, the number and characteristics (i.e. the
functions each unit can perform and their latency) of the functional units available, and
the characteristics of the switch. Algorithmic and heuristic methods are used to limit and

guide the search,

The performance of the RAP has been evaluated in terms of the bandwidth savings real-
ized. and in terms of the floating-point performance achieved. The RAP evaluated contains
four add/subtract units, four multiply units, and eight feedthrough units (feedthrough units

are simple delay elements used to align operands in time and space when two operands are

—
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not ready at the same time, or cannot reach the same arithmetic unit). The expression
compiler mapped 23 benchmark expressions onto a switch that has less than half the con-
nectivity of a complete switch. Average bandwidth savings is 64% over the case where no
locality is exploited. Average floating-point performance for these problems is 3.40MFlops,
or 11% of the 32MFlop peak rate. This corresponds to 82% of the floating-point per-
formance achievable if infinite resources were used (infinite resources corresponds to an
unlimited amount of functional units and complete switch connectivity), and 88% of the
performance achievable if a complete switch is used. These figures justify the use of an

incomplete switch.

7.2 Future Work

This Thesis deals with the full spectrum of problems encountered in the RAP design, from
the hardware implementation, to compilation and system level issues. As a result of this
broad approach, it was not possible to carry out the analysis of all the different issues to
great depth. Much further work is needed on all aspects the design.

Bit-serial implementations of floating-point arithmetic is an area of research unto itself.
Different algorithms for doing serial floating-point are possible, and a comprehensive study
of the alternatives is needed, with emphasis on achieving high performance and low latency.
In particular, the use of redundant-number representations and digit on-line algorithms (16,
29, 35] should be compared to the more conventional two’s complement arithmetic approach.
An important issue that has not been dealt with in this Thesis is the serial implementation
of common floating-point operations such as divide and square root. Algorithms for these
operations in the bit-parallel world are of the compare-shift type, such as in the SRT division
algorithm, or of the iterative type where repeated multiplication is used to converge to the

result [18]. What approach is best in the bit-serial world is an interesting research issue.

Investigating new ways to improve the floating-point performance and bandwidth per-
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formance is an important area for further study. Currently the RAP floating-point perfor-
mance is limited principally by the parallelism present within one mathematical expression.
Finding what mechanisms are needed to allow the RAP to efficiently exploit parallelism
between mathematical expressions is the key to increasing the fioating-point performance.
Exploiting the parallelism betweén expressions in turn raises many compiler level issues.
Exploitiag local memory to further reduce bandwidth réquirements is likely to lead to sig-
nificant off chip bandwidth reductions. One could envision haviag a RAP-like datapath on
a chip with a subsidiary register file. The RAP datapath would reduce the on chip I/0
bandwidth-so that the register file would not have to be multi-ported. At the same time, the
register ftle could be used to-store results coming out of the datapath. This would reduce
off chip I/O since the results could be stored on chip for later use.

Finally, many system level issues remmain to be addressed. How does one break up
problems for the RAP? How does one decide how to distribute computation over different
RAPs in a multiprocessor system like the J-Machine? Should RAP pipelining be used or
will this put too large a burdeén on the communication network? These problems are part
of the larger problem of resource management and utilization that must be dealt with in

all computer systems.

The idea of having several serial floating-point units on a chip connected with a switch,
represents a flexible and efficient alternative to bit parallel arithmetic and a register file. The
ideas found in this Thesis, including high performance serial floating-point implementations,
the techniques for exposing and exploiting parallelism in arithmetic computation, and the
methods for reducing I/O bandwidth, can be developed much further. As this development
occurs, the RAP and its variations will become increasingly attractive as solutions to the

problem of achieving high performance floating-point.




Appendix A

4-Bit Adder Simulation and
Layout

This appendix contains the SPICE models and the schematics used in the simulation of

different 4-bit adders, as well as the layout for the basic adder cells used to estimate area.
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A.1 Simulation

The fallowing CPICE transistor parameter models were used. These are taken from the

VTI 2um process:

.TEMP 110

»Slow NMOS, Slow PMOS models, V-CMOS process.
.MODEL NMOS NMOS

+LEVEL=2 VI0=0.75 TOX=0.0400U NSUB=3.S50E16
+XJ=0.15U LD=0.20U U0=850 VMAX=§5.1E4
+UCRIT=0.62E5 UEXP=»(0.125

+PB=0.80 NEFF=4.0 DELTA=1.4

+CGS0=195.P CGDO=195.P CJ=195.U MJ=0.76
+CJSW=50Q.P MJSW=0.30Q

+RSH=38

.MODEL PMOS PMOS

+LEVEL=2 VT0=-0.75 TOX=Q.0400U NSUB=6.0E1S
+XJ=0.06U LD=0.20U UQ=255 VMAZ=3.0E4
+UCRIT=0.86ES UEXP=0.29

+PB=0.80 NEFF=2.656 DELTA=1.0

+CGS0=190.P CGD0=190.P CJ=260.U MJ=0.536
+CJSW=350.P MJSW=0.34

+RSH=110

The four adders simulated are:

1. ADDER1: Precharged Manchester carry chain.

2. ADDER2: Precharged Manchester carry chain with positive feedback pulldown cir-

cuitry.
3. ADDER3: Lookahead adder using domino logic.

4. ADDER4: Ripple carry adder with optimized carry path.
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Figure A.l1 shows the SPICE output waveforms for the four adders. For each adder
two plots are shown. The first is a plot of the carry signal at each stage, including the
final storage stage where the final carry out is latched. The second is a plot of the sum
output at each stage, as well as the output of the register in which the final bit is stored.
For reference, one of the clock signals is plotted in each case. Phase two is plotted for the
first three precharged adders, while phase one is plotted for the ripple adder. Delays were
measured from the 2.5V mark. Since the storage node of the output carry load is non-
restoring, care must be taken that the voltage reached is above the p-transistor threshold
(= 4V) for a high going voltage, and below the n-transistor threshold (=~ 1V) for a low
going voltage, before the falling edge of the clock.

A.2 4-bit Adder Schematics

This section contains the schematics of the 4-bit adders that were used in the simulation.
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A.3 4-bit Adder Layout

In this section, plots of the cells used to estimate area are shown. For ADDER1, ADDER2.
and ADDER4 a single bit of the adder was layed out, whereas for ADDERS the complete

4-bit adder is shown, due to the non-uniform nature of the circuit.
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File: addert
User: stuart
Date: Tue Dec 13 00:11:38 1088
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Pile: adderl
User: stuart
Date: Tue Dec 13 00:11:14 1088
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File: adders
Uger: stuart
Dace: Tue Dec 13 00:11:53 1088
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File: adderd
User: stwart
Date: Tue Dec 20 21:27:08 1088
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